Package: wisclabmisc (via r-universe)

September 10, 2024

Type Package

Title Tools to Support the 'WiscLab'

Version 0.1.0

Description A collection of 'R' functions for use (and re-use) across 'WiscLab' projects. These are analysis or presentation oriented functions--that is, they are not for data reading or data cleaning.

License MIT + file LICENSE

URL <https://github.com/tjmahr/wisclabmisc>,

<https://www.tjmahr.com/wisclabmisc/>

BugReports <https://github.com/tjmahr/wisclabmisc/issues>

Depends R $(>= 4.1)$

Imports dplyr, gamlss $(>= 5.2.0)$, magrittr, ordinal, pROC, purrr, rlang ($>= 0.4.11$), rsample, sessioninfo, stringr, tibble, tidyr, tidyselect, usethis

Suggests gamlss.dist, ggplot2, knitr, logitnorm, nlme, numDeriv, rmarkdown, roxygen2, rstanarm, testthat, tidyverse

VignetteBuilder knitr

Config/testthat/edition 3

Encoding UTF-8

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

Repository https://tjmahr.r-universe.dev

RemoteUrl https://github.com/tjmahr/wisclabmisc

RemoteRef HEAD

RemoteSha 2d2df5af2ec937c763fdd4a370514b7678bd08c7

Contents

check_sample_centiles

Compute the percentage of points under each centile line

Description

Compute the percentage of points under each centile line

Usage

```
check_sample_centiles(
 data,
 model,
 var_x,
 var_y,
  centiles = c(5, 10, 25, 50, 75, 90, 95)
)
```
chrono_age 3

Arguments

Value

a tibble the number of points and the percentage of points less than or equal to each quantile value.

chrono_age *Compute chronological age in months*

Description

Ages are rounded down to the nearest month. A difference of 20 months, 29 days is interpreted as 20 months.

Usage

chrono_age(t1, t2)

Arguments

t1, t2 dates in "yyyy-mm-dd" format

Value

the chronological ages in months. NA is returned if the age cannot be computed.

```
# Two years exactly
chrono_age("2014-01-20", "2012-01-20")
#> 24
# Shift a year
chrono_age("2014-01-20", "2013-01-20")
#> 12
chrono_age("2014-01-20", "2011-01-20")
#> 36
# Shift a month
chrono_age("2014-01-20", "2012-02-20")
#> 23
chrono_age("2014-01-20", "2011-12-20")
```

```
#> 25
# 3 months exactly
chrono_age("2014-05-10", "2014-02-10")
#> 3
# Borrow a month when the earlier date has a later day
chrono_age("2014-05-10", "2014-02-11")
#> 2, equal to 2 months, 29 days rounded down to nearest month
# Inverted argument order
chrono_age("2012-01-20", "2014-01-20")
#> 24
# Multiple dates
t1 <- c("2012-01-20", "2014-02-10", "2010-10-10")
t2 <- c("2014-01-20", "2014-05-10", "2014-11-10")
chrono_age(t1, t2)
#> [1] 24 3 49
```
compute_empirical_roc

Create an ROC curve from observed data

Description

Create an ROC curve from observed data

Usage

```
compute_empirical_roc(
 data,
 response,
 predictor,
 direction = "auto",
 best_weights = c(1, 0.5),
  ...
)
```
Arguments

Value

a new dataframe of ROC coordinates is returned with columns for the predictor variable, .sensitivities, .specificities, .auc, .direction, .controls, .cases, .n_controls, .n_cases, .is_best_youden and .is_best_closest_topleft.

Examples

```
set.seed(100)
x1 \leftarrow \text{rnorm}(100, 4, 1)x2 <- rnorm(100, 2, .5)
both \leftarrow c(x1, x2)steps <- seq(min(both), max(both), length.out = 200)
d1 <- dnorm(steps, mean(x1), sd(x1))
d2 <- dnorm(steps, mean(x2), sd(x2))
data <- tibble::tibble(
  y =steps,
 d1 = d1,
  d2 = d2,
  outcome = rbinom(200, 1, prob = 1 - (d1 / (d1 + d2))),
  group = ifelse(outcome, "case", "control")
\lambda# get an ROC on the fake data
compute_empirical_roc(data, outcome, y)
# this guess the cases and controls from the group name and gets it wrong
compute_empirical_roc(data, group, y)
# better
compute_empirical_roc(data, group, y, levels = c("control", "case"))
```
compute_predictive_value_from_rates *Compute positive and negative predictive value*

Description

Compute positive and negative predictive value

Usage

compute_predictive_value_from_rates(sensitivity, specificity, prevalence)

Arguments

sensitivity, specificity, prevalence vectors of confusion matrix rates

Details

These vectors passed into this function should be some common length and/or length 1. For example, 4 sensitivities, 4 specificities and 1 incidence will work because the sensitivities and specificities have a common length and we can safely recycle (reuse) the incidence value. But 4 sensitivities, 2 specificities, and 1 incidence will *fail* because there is not a common length.

Value

a tibble with the columns sensitivity, specificity, prevalence, ppv, npv where ppv and npv are the positive predictive value and the negative predictive value.

Examples

```
compute_predictive_value_from_rates(
  sensitivity = .9,
  specificity = .8,
 prevalence = .05
)
compute_predictive_value_from_rates(
 sensitivity = .67,
 specificity = .53,
 prevalence = c(.15, .3))
```
compute_smooth_density_roc *Create an ROC curve from smoothed densities*

Description

Create an ROC curve from smoothed densities

Usage

```
compute_smooth_density_roc(
  data,
 controls,
  cases,
 along = NULL,
 best_weights = c(1, 0.5),
  direction = "auto",
  ...
)
```
Arguments

Value

the dataframe is updated with new columns for the .sensitivities, .specificities, .auc, .roc_row, .is_best_youden and .is_best_closest_topleft.

Examples

```
set.seed(100)
x1 \leftarrow \text{norm}(100, 4, 1)x2 \leftarrow \text{norm}(100, 2, .5)both \leftarrow c(x1, x2)steps <- seq(min(both), max(both), length.out = 200)
d1 \leftarrow \text{dnorm}(\text{steps}, \text{mean}(x1), \text{sd}(x1))d2 \leftarrow \text{dnorm}(\text{steps}, \text{mean}(x2), \text{sd}(x2))data <- tibble::tibble(
  y = steps,
  d1 = d1,
  d2 = d2,
  outcome = rbinom(200, 1, prob = 1 - (d1 / (d1 + d2))),
  group = ifelse(outcome, "case", "control")
)
compute_smooth_density_roc(data, d1, d2)
compute_smooth_density_roc(data, d1, d2, along = y)
# terrible ROC because the response is not present (just the densities)
data_shuffled <- data[sample(seq_len(nrow(data))), ]
compute_smooth_density_roc(data_shuffled, d1, d2)
# sorted along response first: correct AUC
compute_smooth_density_roc(data_shuffled, d1, d2, along = y)
```
data_example_intelligibility_by_length *Simulated intelligibility scores by utterance length*

Description

A dataset of simulated intelligibility scores for testing and demonstrating modeling functions. These were created by fitting a Bayesian model of the raw Hustad and colleagues (2020) and drawing 1 sample from the posterior distribution of expected predictions (i.e., "epreds). In other words, these values are model predictions of the original dataset. They are correlated with original dataset values at $r = .86$. We might think of the simulation as adding random noise to the original dataset.

Usage

```
data_example_intelligibility_by_length
```
Format

A data frame with 694 rows and 5 variables:

child identifier for the child

age_months child's age in months

length_longest length of the child's longest utterance

tocs_level utterance length

sim_intelligibility child's intelligibility for the given utterance length (proportion of words said by the child that were correctly transcribed by two listeners)

References

Hustad, K. C., Mahr, T., Natzke, P. E. M., & Rathouz, P. J. (2020). Development of Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-Sectional Study of Growth. *Journal of Speech, Language, and Hearing Research*, *63*(6), 1675–1687. https://doi.org/10.1044/2020_JSLHR-20-00008

data_fake_intelligibility

Fake intelligibility data

Description

A dataset of fake intelligibility scores for testing and demonstrating modeling functions. These were created by randomly sampling 200 rows of an intelligibility dataset and adding random noise to the age_months and intelligibility variables. These values do not measure any real children but represent plausible age and intelligibility measurements from our kind of work.

Usage

data_fake_intelligibility

Format

A data frame with 200 rows and 2 variables:

age_months child's age in months

intelligibility child's intelligibility (proportion of words said by the child that were correctly transcribed by two listeners)

data_fake_rates *Fake speaking rate data*

Description

A dataset of fake speaking rate measures for testing and demonstrating modeling functions. These were created by randomly sampling 200 rows of a speaking rate dataset and adding random noise to the age_months and speaking_sps variables. These values do not measure any real children but represent plausible age and rate measurements from our kind of work.

Usage

data_fake_rates

Format

A data frame with 200 rows and 2 variables:

age_months child's age in months

speaking_sps child's speaking rate in syllables per second

data_features_consonants

Phonetic features of consonants and vowels

Description

These are two dataframes that contain conventional phonetic features of the consonants and vowels used by CMU phonetic alphabet.

Usage

data_features_consonants

data features vowels

Format

An object of class tbl_df (inherits from tbl, data.frame) with 24 rows and 10 columns. An object of class tbl_df (inherits from tbl, data.frame) with 17 rows and 12 columns.

Details

Most of the features are self-evident and definitional. For example, /p/ is *the* bilabial voiceless stop. For fuzzier features, I consulted the general IPA chart and the Wikipedia page on English phonology. These issues included things like: *what are the lax vowels again?* or *the last two rows of the consonant tables are approximants, so /r,l,j/ are approximants.*

Some features have alternative feature sets in order to accommodate degrees of aggregation. For example, /r,l,j,w/ are *approximant* in manner but divided into *liquid* and *glide* in manner_alt.

Consonants:

data features consonants is a dataframe with 24 rows and 10 variables.

knitr::kable(data_features_consonants)

Description of each column: **phone** phone in IPA **cmubet** phone in the CMU alphabet **wiscbet** phone in an older system used by our lab **voicing** *voiced* versus *voiceless* **voicing_alt** *spread_glottis* versus *plain*

manner manner of articulation

manner_alt alternative manner coding that separates *approximants* into *liquids* and *glides*

place place of articulation

place fct place coded as a factor and ordered based on frontness of the articulators. *labiovelar* is recoded as NA.

sonorance *obstruent* versus *sonorant*

sonorance_alt *obstruant* versus *sonorant* versus *strident*.

Levels of the factor columns:

```
data_features_consonants |>
 lapply(levels) |>
 Filter(length, x = 0)
#> $place_fct
#> [1] "labial" "labiodental" "dental" "alveolar" "postalveolar"
#> [6] "palatal" "velar" "glottal"
```
Considerations about consonant features:

The CMU alphabet does not include a glottal stop.

Here /f,v/ are coded as *strident* following [Wikipedia](https://en.wikipedia.org/wiki/Sibilant) and *Sound Pattern of English*. If this feature value doesn't seem right, we should probably use an alternative feature of *sibilant* for the stridents minus $/f_{,V}/$.

The alternative voicing scheme was suggested by a colleague because of how the voicevoiceless phonetic contrast is achieved with different articulatory strategies in different languages. Note that voicing_alt does not assign a feature to nasals or approximants.

Vowels:

data_features_vowels is a dataframe with 17 rows and 11 variables.

knitr::kable(data_features_vowels)

12 *data_features_consonants*

Description of each column:

phone phone in IPA **cmubet** phone in the CMU alphabet **wiscbet** phone in an older system used by our lab **hint** a word containing the selected vowel **manner** manner of articulation **manner_alt** alternative manner with *vowel*, *diphthong* and *r-colored* **tenseness** *tense* versus *lax* (versus *diphthong* and *r-colored*) **height** vowel height **height_fct** height coded as a factor ordered *high*, *mid*, *low*. *diphthong* is recoded to NA. **backness** vowel backness **backness_fct** backness coded as a factor ordered *front*, *central*, *back*. *diphthong* is recoded to NA. **rounding** *unrounded* versus *rounded* (versus *diphthong* and *r-colored*)

Levels of the factor columns:

```
data_features_vowels |>
  lapply(levels) |>
  Filter(length, x = 0)
#> $height_fct
#> [1] "high" "mid" "low"
#>
#> $backness_fct
#> [1] "front" "central" "back"
```
Considerations about vowel features:

I don't consider /e / and /o / to be diphthongs, but perhaps manner_alt could encode the difference of these vowels from the others.

In the CMU alphabet and ARPAbet, vowels can include a number to indicate vowel stress, so AH1 or AH2 is $/$ but AH0 is $/$ ³/.

The vowel features for General American English, [according to Wikipedia,](https://en.wikipedia.org/wiki/English_phonology) are as follows: I adapted these features in this way:

- *tense* and *lax* features were directly borrowed. Diphthongs and r-colored vowels are were not assign a tenseness.
- $/$, $/$ raised to *mid* (following the general IPA chart)
- $//$ moved to *back* (following the general IPA)
- diphthongs have no backness or height
- r-colored vowels were given the backness and height of the $/$, $\partial/$

Based on the assumption that $/$, ϕ are the same general vowel with differing stress, these vowels have the same features. This definition clashes with the general IPA chart which

fit_beta_gamlss 13

places $/$ / as a back vowel. However, $/$ / is a conventional notation. Quoting [Wikipedia](https://en.wikipedia.org/wiki/English_phonology) again: "Although the notation $//$ is used for the vowel of STRUT in RP and General American, the actual pronunciation is closer to a near-open central vowel $\lceil \cdot \rceil$ in RP and advanced back $\lceil \cdot \rceil$ in General American." That is, $/$ / is fronted in American English (hence, *mid*) in American English.

fit_beta_gamlss *Fit a beta regression model (for intelligibility)*

Description

The function fits the same type of GAMLSS model as used in [Hustad and colleagues \(2021\)](https://doi.org/10.1044/2021_JSLHR-21-00142): A beta regression model (via gamlss.dist::BE()) with natural cubic splines on the mean (mu) and scale (sigma). This model is fitted using this package's [mem_gamlss\(\)](#page-26-1) wrapper function.

Usage

```
fit_beta_gamlss(data, var_x, var_y, df_mu = 3, df_sigma = 2, control = NULL)
fit_beta_gamlss_se(
  data,
 name_x,
 name_y,
  df_mu = 3,
  df_sigma = 2,
  control = NULL
)
predict_beta_gamlss(newdata, model, centiles = c(5, 10, 50, 90, 95))
optimize_beta_gamlss_slope(
  model,
  centiles = 50,
  interval = c(30, 119),
  maximum = TRUE)
```

```
uniroot_beta_gamlss(model, centiles = 50, targets = 0.5, interval = c(30, 119))
```
Arguments

Details

There are two versions of this function. The main version is fit beta gamlss(), and it works with unquoted column names (e.g., $age)$. The alternative version is $fit_beta_$ gamlss_se(); the final "se" stands for "Standard Evaluation". This designation means that the variable names must be given as strings (so, the quoted "age" instead of bare name age). This alternative version is necessary when we fit several models using parallel computing with furrr::future_map() (as when using bootstrap resampling).

[predict_centiles\(\)](#page-26-2) will work with this function, but it will likely throw a warning message. Therefore, predict_beta_gamlss() provides an alternative way to compute centiles from the model. This function manually computes the centiles instead of relying on gamlss::centiles(). The main difference is that new *x* values go through splines::predict.ns() and then these are multiplied by model coefficients.

optimize_beta_gamlss_slope() computes the point (i.e., age) and rate of steepest growth for different quantiles. This function wraps over the following process:

- an internal prediction function computes a quantile at some x from model coefficients and spline bases.
- another internal function uses $numDeriv::grad()$ to get the gradient of this prediction function for x.
- optimize_beta_gamlss_slope() uses stats::optimize() on the gradient function to find the x with the maximum or minimum slope.

fit_beta_gamlss 15

uniroot_beta_gamlss() also uses this internal prediction function to find when a quantile growth curve crosses a given value. stats::uniroot() finds where a function crosses 0 (a root). If we modify our prediction function to always subtract .5 at the end, then the root for this prediction function would be the x value where the predicted value crosses .5. That's the idea behind how uniroot beta gamlss() works. In our work, we would use this approach to find, say, the age (root) when children in the 10th percentile (centiles) cross 50% intelligibility (targets).

GAMLSS does beta regression differently:

This part is a brief note that GAMLSS uses a different parameterization of the beta distribution for its beta family than other packages.

The canonical parameterization of the beta distribution uses shape parameters α and β and the probability density function:

$$
f(y; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} y^{\alpha - 1} (1 - y)^{\beta - 1}
$$

where *B* is the [beta function](https://en.wikipedia.org/wiki/Beta_function).

For beta regression, the distribution is reparameterized so that there is a mean probability μ and some other parameter that represents the spread around that mean. In GAMLSS (gamlss.dist::BE()), they use a scale parameter σ (larger values mean more spread around mean). Everywhere else—betareg::betareg() and rstanarm::stan_betareg() in vignette("betareg", "betareg"), brms::Beta() in vignette("brms_families", "brms"), mgcv::betar()—it's a precision parameter *ϕ* (larger values mean more precision, less spread around mean). Here is a comparison:

betareg, brms, mgcv, etc. $\mu = \alpha/(\alpha + \beta)\phi = \alpha + bE(y) = \mu\text{VAR}(y) = \mu(1 - \mu)/(1 + \phi)$

$$
GAMLSS\mu = \alpha/(\alpha + \beta)\sigma = (1/(\alpha + \beta + 1)) \cdot 5E(y) = \mu VAR(y) = \mu(1 - \mu)\sigma^2
$$

Value

for fit beta gamlss() and fit beta gamlss $se()$, a mem gamlss()-fitted model. The .user data in the model includes degrees of freedom for each parameter and the splines::ns() basis for each parameter. For predict_beta_gamlss(), a dataframe containing the model predictions for mu and sigma, plus columns for each centile in centiles. For optimize_beta_gamlss_slope(), a dataframe with the optimized x values (maximum or minimum), the gradient at that x value (objective), and the quantile (quantile). For uniroot beta gamlss(), a dataframe one row per quantile/target combination with the results of calling stats::uniroot(). The root column is the x value where the quantile curve crosses the target value.

Source

Associated article: https://doi.org/10.1044/2021_JSLHR-21-00142

```
data_fake_intelligibility
m <- fit_beta_gamlss(
  data_fake_intelligibility,
  age_months,
  intelligibility
)
# using "qr" in summary() just to suppress a warning message
summary(m, type = "qr")
# Alternative interface
d <- data_fake_intelligibility
m2 <- fit_beta_gamlss_se(
 data = d,
 name_x = "age_m onths",name_y = "intelligibility"\lambda\text{coef}(m2) == \text{coef}(m)# how to use control to change gamlss() behavior
m_traced <- fit_beta_gamlss(
 data_fake_intelligibility,
  age_months,
  intelligibility,
  control = gamlss::gamlss.control(n.cyc = 15, trace = TRUE)
\lambda# The `.user` space includes the spline bases, so that we can make accurate
# predictions of new xs.
names(m$.user)
# predict logit(mean) at 55 months:
logit_mean_55 <- cbind(1, predict(m$.user$basis_mu, 55)) %*% coef(m)
logit mean 55
stats::plogis(logit_mean_55)
# But predict_gen_gamma_gamlss() does this work for us and also provides
# centiles
new_ages <- data.frame(age_months = 48:71)
centiles <- predict_beta_gamlss(new_ages, m)
centiles
# Confirm that the manual prediction matches the automatic one
centiles[centiles$age_months == 55, "mu"]
stats::plogis(logit_mean_55)
if(requireNamespace("ggplot2", quietly = TRUE)) {
  library(ggplot2)
  ggplot(pivot_centiles_longer(centiles)) +
    \text{aes}(x = age\_months, y = .value) +
```

```
geom_line(aes(group = .centile, color = .centile_pair)) +
    geom_point(
      aes(y = intelligibility),
      data = subset(
        data_fake_intelligibility,
        48 <= age_months & age_months <= 71
      )
    )
}
# Age of steepest growth for each centile
optimize_beta_gamlss_slope(
 model = m,
  centiles = c(5, 10, 50, 90),
  interval = range(data_fake_intelligibility$age_months)
)
# Manual approach: Make fine grid of predictions and find largest jump
centiles_grid <- predict_beta_gamlss(
 newdata = data.frame(age_months = seq(28, 95, length.out = 1000)),
 model = m
\lambdacentiles_grid[which.max(diff(centiles_grid$c5)), "age_months"]
# When do children in different centiles reach 50%, 70% intelligibility?
uniroot_beta_gamlss(
 model = m,centiles = c(5, 10, 50),
 targets = c(.5, .7))
```
fit_gen_gamma_gamlss *Fit a generalized gamma regression model (for speaking rate)*

Description

The function fits the same type of GAMLSS model as used in [Mahr and colleagues \(2021\)](https://doi.org/10.1044/2021_JSLHR-21-00206): A generalized gamma regression model (via gamlss.dist::GG()) with natural cubic splines on the mean (mu), scale (sigma), and shape (nu) of the distribution. This model is fitted using this package's [mem_gamlss\(\)](#page-26-1) wrapper function.

Usage

```
fit gen gamma gamlss(
  data,
  var_x,
  var_y,
  df_{mu} = 3,
  df_sigma = 2,
```

```
df_nu = 1,
  control = NULL
)
fit_gen_gamma_gamlss_se(
  data,
 name_x,
  name_y,
  df_mu = 3,
  df_sigma = 2,
  df_nu = 1,
  control = NULL
)
```
predict_gen_gamma_gamlss(newdata, model, centiles = c(5, 10, 50, 90, 95))

Arguments

Details

There are two versions of this function. The main version is fit gen_gamma_gamlss(), and it works with unquoted column names (e.g., age). The alternative version is fit_gen_gamma_gamlss_se(); the final "se" stands for "Standard Evaluation". This designation means that the variable names must be given as strings (so, the quoted "age" instead of bare name age). This alternative version is necessary when we fit several models using parallel computing with furrr::future_map() (as when using bootstrap resampling).

[predict_centiles\(\)](#page-26-2) will work with this function, but it will likely throw a warning message. Therefore, predict_gen_gamma_gamlss() provides an alternative way to compute centiles from the model. This function manually computes the centiles instead of relying on gamlss::centiles(). The main difference is that new *x* values go through splines:: predict.ns() and then these are multiplied by model coefficients.

Value

for fit_gen_gamma_gamlss() and fit_gen_gamma_gamlss_se(), a [mem_gamlss\(\)](#page-26-1)-fitted model. The .user data in the model includes degrees of freedom for each parameter and the splines::ns() basis for each parameter. For predict_gen_gamma_gamlss(), a dataframe containing the model predictions for mu, sigma, and nu, plus columns for each centile in centiles.

Source

Associated article: https://doi.org/10.1044/2021_JSLHR-21-00206

```
data_fake_rates
m <- fit_gen_gamma_gamlss(data_fake_rates, age_months, speaking_sps)
# using "qr" in summary() just to suppress a warning message
summary(m, type = "qr")# Alternative interface
d <- data_fake_rates
m2 <- fit_gen_gamma_gamlss_se(
 data = d,
 name_x = "age_months",name_y = "speaking_sps"
\lambda\text{coeff}(m2) == \text{coeff}(m)# how to use control to change gamlss() behavior
m_traced <- fit_gen_gamma_gamlss(
  data_fake_rates,
  age_months,
  speaking_sps,
  control = gamlss::gamlss.control(n.cyc = 15, trace = TRUE)
\lambda# The `.user` space includes the spline bases, so that we can make accurate
# predictions of new xs.
names(m$.user)
# predict log(mean) at 55 months:
log_mean_55 <- cbind(1, predict(m$.user$basis_mu, 55)) %*% coef(m)
log_mean_55
exp(log_mean_55)
# But predict_gen_gamma_gamlss() does this work for us and also provides
# centiles
new_ages <- data.frame(age_months = 48:71)
centiles <- predict_gen_gamma_gamlss(new_ages, m)
centiles
```

```
# Confirm that the manual prediction matches the automatic one
centiles[centiles$age_months == 55, "mu"]
exp(log_mean_55)
if(requireNamespace("ggplot2", quietly = TRUE)) {
  library(ggplot2)
  ggplot(pivot_centiles_longer(centiles)) +
    \text{aes}(x = age\_months, y = .value) +geom_line(aes(group = .centile, color = .centile_pair)) +
    geom_point(
      \text{aes}(y = \text{speaking} \text{sys}),data = subset(
        data_fake_rates,
         48 <= age_months & age_months <= 71
      )
    )
}
# Example of 0-df splines
m <- fit_gen_gamma_gamlss(
  data_fake_rates,
  age_months,
  speaking_sps,
  df_mu = 0,
  df_sigma = 2,
  df_nu = 0)
\text{coef}(m, \text{ what = "mu")}coef(m, what = "sigma")
\text{coef}(\texttt{m}, \texttt{what = "nu")}# mu and nu fixed, c50 mostly locked in
predict_gen_gamma_gamlss(new_ages, m)[c(1, 9, 17, 24), ]
```
fit_kmeans *Run (scaled) k-means on a dataset.*

Description

Observations are scale()-ed before clustering.

Usage

fit_kmeans(data, k, vars, args_kmeans = list())

Arguments

fit_kmeans 21

Details

Note that each variable is scaled() before clustering and then cluster means are unscaled to match the original data scale.

This function provides the original kmeans labels as . kmeans_cluster but other alternative labeling based on different sortings of the data. These are provided in order to deal with label-swapping in Bayesian models. See bootstrapping example below.

Value

the original data but augmented with additional columns for clustering details. including .kmeans_cluster (cluster number of each observation, as a factor) and .kmeans_k (selected number of clusters).

Cluster-level information is also included. For example, suppose that we cluster using the variable x. Then the output will have a column. **Example x** giving the cluster mean for x and .kmeans_rank_x giving the cluster labels reordered using the cluster means for x. The column .kmeans_sort contains the cluster sorted using the first principal component of the scaled variables. All columns of cluster indices are a factor() so that they can be plotted as discrete variables.

```
data_kmeans <- fit_kmeans(mtcars, 3, c(mpg, wt, hp))
library(ggplot2)
ggplot(data_kmeans) +
  \text{aes}(x = wt, y = mpg) +
  geom_point(aes(color = .kmeans_cluster))
ggplot(data_kmeans) +
  \text{aes}(x = wt, y = mpg) +
  geom_point(aes(color = .kmeans_rank_wt))
# Example of label swapping
set.seed(123)
data_boots <- lapply(
 1:10,
 function(x) {
    rows <- sample(seq_len(nrow(mtcars)), replace = TRUE)
    data <- mtcars[rows, ]
    data$.bootstrap <- x
    data
 }
) |>
  lapply(fit_kmeans, k = 3, c(mpg, wt, hp)) |>
```

```
dplyr::bind_rows() |>
  dplyr::select(.bootstrap, dplyr::starts_with(".kmeans_")) |>
 dplyr::distinct()
# Clusters start off in random locations and move to center, so the labels
# differ between model runs and across bootstraps.
ggplot(data_boots) +
 \text{aes}(x = .\text{kmeans\_wt}, y = .\text{kmeans\_mpg}) +geom_point(aes(color = .kmeans_cluster)) +
 labs(title = "k-means centers on 10 bootstraps")
# Labels sorted using first principal component
# so the labels are more consistent.
ggplot(data_boots) +
 \text{aes}(x = .\text{kmeans\_wt}, y = .\text{kmeans\_mpg}) +geom_point(aes(color = .kmeans_sort)) +
 labs(title = "k-means centers on 10 bootstraps")
```
format_year_month_age

Convert age in months to years;months

Description

Convert age in months to years;months

Usage

```
format_year_month_age(x)
```
Arguments

x a vector ages in months

Details

Ages of NA return "NA;NA".

```
This format by default is not numerically ordered. This means that c("2;0", "10;10",
"10;9") would sort as c("10;10", "10;9", "2;0"). The function stringr::str_sort(...,
numeric = TRUE) will sort this vector correctly.
```
Value

ages in the years;months format

```
ages <- c(26, 58, 25, 67, 21, 59, 36, 43, 27, 49)
format_year_month_age(ages)
```
impute_values_by_length

Staged imputation

Description

Impute missing data at different utterance lengths using successive linear models.

Usage

```
impute_values_by_length(
 data,
 var_y,
 var_length,
  id_cols = NULL,
 include_max_length = FALSE,
 data_train = NULL
)
```
Arguments

Value

a dataframe with the additional columns {var_y}_imputed (the imputed value), .max_{var_length} with the highest value of var_length with observed data, and {var_y}_imputation for labeling whether observations were "imputed" or "observed".

Background

In Hustad and colleagues (2020), we modeled intelligibility data in young children's speech. Children would hear an utterance and then they would repeat it. The utterances started at 2 words in length, then increased to 3 words in length, and so on in batches of 10 sentences, all the way to 7 words in length. There was a problem, however: Not all of the children could produce utterances at every length. Specifically, if a child could not reliably produced 5 utterances of a given length length, the task was halted. So given the nature of the task, if a child had produced 5-word utterances, they also produced 2–4-word utterances as well.

The length of the utterance probably influenced the outcome variable: Longer utterances have more words that might help a listener understand the sentence, for example. Therefore, it did not seem appropriate to ignore the missing values. We used the following two-step procedure (see the [Supplemental Materials](https://doi.org/10.23641/asha.12330956.v1) for more detail):

Other notes:

Remark about data and data_train: One might ask, *why shouldn't some children help train the data imputation models?* Let's consider a norm-referenced standardized testing scenario: We have a new participant (observations in data), and we want to know how they compare to their age peers (participants in data_train). By separating out data_train and fixing it to a reference group, we can apply the same adjustment/imputation procedure to all new participants.

References

Hustad, K. C., Mahr, T., Natzke, P. E. M., & Rathouz, P. J. (2020). Development of Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-Sectional Study of Growth. *Journal of Speech, Language, and Hearing Research*, *63*(6), 1675–1687. https://doi.org/10.1044/2020_JSLHR-20-00008

Hustad, K. C., Mahr, T., Natzke, P. E. M., & J. Rathouz, P. (2020). Supplemental Material S1 (Hustad et al., 2020). ASHA journals. https://doi.org/10.23641/asha.12330956.v1

```
set.seed(1)
fake_data <- tibble::tibble(
  child = c("a", "a", "a", "a", "a",
    "b", "b", "b", "b", "b",
    "c", "c", "c", "c", "c",
    "e", "e", "e", "e", "e",
    "f", "f", "f", "f", "f",
    "g", "g", "g", "g", "g",
    "h", "h", "h", "h", "h",
    "i", "i", "i", "i", "i"
 ),
 level = c(1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5),
 x = c(c(100, 110, 120, 130, 150) + c(-8, -5, 0, NA, NA),
    c(100, 110, 120, 130, 150) + c(6, 6, 4, NA, NA),c(100, 110, 120, 130, 150) + c(-5, -5, -2, 2, NA),
    c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
```

```
c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
    c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
    c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
    c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6
  )
\overline{\phantom{a}}data_imputed <- impute_values_by_length(
  fake_data,
  x,
  level,
  id\_cols = c(cchild),
  include_max_length = FALSE
)
if (requireNamespace("ggplot2")) {
  library(ggplot2)
  ggplot(data_imputed) +
    \text{aes}(x = level, y = x\_imputed) +
    geom_line(aes(group = child)) +
    geom_point(aes(color = x_imputation))
}
```
join_to_split *Join data onto resampled IDs*

Description

Join data onto resampled IDs

Usage

 $join_to_split(x, y, by, validate = FALSE)$

Arguments

Value

the original rset object with its x\$data updated to join with y and with the row numbers x\$in_id updated to work on the expanded dataset.

Examples

```
library(dplyr)
data_trees <- tibble::as_tibble(datasets::Orange)
data_tree_ids <- distinct(data_trees, Tree)
# Resample ids
data_bootstraps <- data_tree_ids %>%
 rsample::bootstraps(times = 20) %>%
 rename(splits_id = splits) %>%
 # Attach data to resampled ids
 mutate(
   data_splits = splits_id %>% purrr::map(
      join_to_split,
      data_trees,
     by = "Tree",
      validate = TRUE
    )
 \lambda
```
data_bootstraps

logitnorm_mean *Compute the mean of logit-normal distribution(s)*

Description

This function is a wrapper around logitnorm::momentsLogitnorm().

Usage

```
logitnorm_mean(mu, sigma)
```
Arguments

Value

the means of the distributions

```
x \leftarrow logitnorm_mean(2, 1)
x
# compare to simulation
```


mem_gamlss 27

```
set.seed(100)
rnorm(1000, 2, 1) |> plogis() |> mean()
```
mem_gamlss *Fit a gamlss model but store user data*

Description

Think of it as a gamlss model with memories (mem. gamlss).

Usage

mem_gamlss(...)

Arguments

... arguments passed to gamlss::gamlss()

Value

the fitted model object but updated to include user information in model\$.user. Includes the dataset used to fit the model model\$.user\$data, the session info model\$.user\$session_info and the call used to fit the model model\$.user\$call. model\$call is updated to match

predict_centiles *Predict and tidy centiles from a GAMLSS model*

Description

gamlss has trouble doing predictions without the original training data.

Usage

```
predict_centiles(newdata, model, centiles = c(5, 10, 50, 90, 95), ...)
```
pivot_centiles_longer(data)

Arguments

Value

a tibble with fitted centiles for predict_centiles() and a long-format tibble with one centile value per row in pivot_centiles_longer()

tocs_item *Extract the TOCS details from a string (usually a filename)*

Description

Extract the TOCS details from a string (usually a filename)

Usage

```
tocs_item(xs)
```
tocs_type(xs)

tocs_length(xs)

Arguments

xs a character vector

Value

tocs_item() returns the substring with the TOCS item, tocs_type() returns whether the item is "single-word" or "multiword", and tocs_length() returns the length of the TOCS item (i.e., the number of words).

```
x \leftarrow c (
  "XXv16s7T06.lab", "XXv15s5T06.TextGrid", "XXv13s3T10.WAV",
  "XXv18wT11.wav", "non-matching", "s2T01"
)
data.frame(
  x = x,item = tocs_time(x),type = tocs_type(x),
  length = tocs_length(x)\mathcal{L}
```


Description

Compute AUCs using the trapezoid method

Usage

```
trapezoid_auc(xs, ys)
```
partial_trapezoid_auc(xs, ys, xlim)

Arguments

Value

the area under the curve computed using the trapezoid method. For partial_trapezoid_auc(), the partial area under the curve is computed.

```
if (requireNamespace("rstanarm", quietly = TRUE)) {
 wells <- rstanarm::wells
 r <- pROC::roc(switch ~ arsenic, wells)
 pROC::auc(r)
 trapezoid_auc(r$specificities, r$sensitivities)
 pROC::auc(r, partial.auc = c(.9, 1), partial.auc.focus = "sp")partial_trapezoid_auc(r$specificities, r$sensitivities, c(.9, 1))
 pROC::auc(r, partial.auc = c(.9, 1), partial.auc.focus = "se")partial_trapezoid_auc(r$sensitivities, r$specificities, c(.9, 1))
 pROC::auc(r, partial.auc = c(.1, .9), partial.auc.focus = "sp")partial_trapezoid_auc(r$specificities, r$sensitivities, c(.1, .9))
 pROC::auc(r, partial.auc = c(.1, .9), partial.auc.focus = "se")partial_trapezoid_auc(r$sensitivities, r$specificities, c(.1, .9))
}
```
Weight utterance lengths by using an ordinal regression model

Description

For each participant, we find their length of longest utterance. We predict this longest utterance length as a nonlinear function of some variable, and we compute the probability of reaching each utterance length at each value of the predictor variable. These probabilities are then normalized to provide weights for each utterance length.

Usage

```
weight_lengths_with_ordinal_model(
  data_train,
  var_length,
  var_x,
  id_cols,
  spline_df = 2,
  data_join = NULL
)
```
Arguments

Value

the probability and weights of each utterance length at each observed value of var_x. These are in the added columns {var_length}_prob_reached and {var_length}_weight, respectively.

References

Hustad, K. C., Mahr, T., Natzke, P. E. M., & Rathouz, P. J. (2020). Development of Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-Sectional Study of Growth. *Journal of Speech, Language, and Hearing Research*, *63*(6), 1675–1687. https://doi.org/10.1044/2020_JSLHR-20-00008

Hustad, K. C., Mahr, T., Natzke, P. E. M., & J. Rathouz, P. (2020). Supplemental Material S1 (Hustad et al., 2020). ASHA journals. https://doi.org/10.23641/asha.12330956.v1

```
data_weights <- weight_lengths_with_ordinal_model(
 data_example_intelligibility_by_length,
 tocs_level,
 age_months,
 child,
 splitne_df = 2\lambdaif (requireNamespace("ggplot2")) {
 library(ggplot2)
 p1 <- ggplot(data_weights) +
    \text{aes}(x = age\_months, y = tocs\_level\_prob\_reached) +geom_line(aes(color = ordered(tocs_level)), linewidth = 1) +
    scale_color_ordinal(end = .85) +
    labs(y = "Prob. of reaching length", color = "Utterance length")
 print(p1)
 p2 <- p1 +
    aes(y = tocs_level_weight) +
    labs(y = "Weight of utterance length")
 print(p2)
}
```
Index

```
∗ data-cleaning
    28
∗ datasets
    <code>data_example_intelligibility_by_length,fit_beta_gamlss, 13\,</sup></code>
        7
    data_fake_intelligibility, 8
    data_fake_rates, 9
    data_features_consonants, 9
∗ etc
    format_year_month_age, 22
    join_to_split, 25
∗ gamlss
    check_sample_centiles, 2
   mem_gamlss, 27
   predict_centiles, 27
∗ models
    fit_beta_gamlss, 13
    fit_gen_gamma_gamlss, 17
∗ roc
    compute_empirical_roc, 4
    compute_predictive_value_from_rates,
        5
    compute_smooth_density_roc, 6
    trapezoid_auc, 29
betareg::betareg(), 15
brms::Beta(), 15
check_sample_centiles, 2
chrono_age, 3
compute_empirical_roc, 4
compute_predictive_value_from_rates,
       5
compute_smooth_density_roc, 6
data_example_intelligibility_by_length,
        7
data_fake_intelligibility, 8
data_fake_rates, 9
data_features_consonants, 9
                                             data_features_vowels
                                                     (data_features_consonants), 9
                                             fit_beta_gamlss(), 14
                                             fit_beta_gamlss_se (fit_beta_gamlss),
                                                     13
                                             fit_gen_gamma_gamlss, 17
                                             fit_gen_gamma_gamlss(), 18
                                             fit_gen_gamma_gamlss_se
                                                     (fit_gen_gamma_gamlss), 17
                                             fit_kmeans, 20
                                             format_year_month_age, 22
                                             furrr::future_map(), 14, 18
                                             gamlss.dist::BE(), 13, 15
                                             gamlss.dist::GG(), 17
                                             gamlss::centiles(), 14, 18
                                             gamlss::gamlss.control(), 14, 18
                                             impute_values_by_length, 23
                                             join_to_split, 25
                                             logitnorm::momentsLogitnorm(), 26
                                             logitnorm_mean, 26
                                             27
                                             mem_gamlss(), 13, 15, 17, 19
                                             mgcv::betar(), 15
                                             optimize_beta_gamlss_slope
                                                     (fit_beta_gamlss), 13
                                             partial_trapezoid_auc
                                                     (trapezoid_auc), 29
                                             pivot_centiles_longer
                                                     (predict_centiles), 27
                                             predict_beta_gamlss
                                                     (fit_beta_gamlss), 13
                                             predict_centiles, 27
```
INDEX 33

```
predict_centiles()
, 14
, 18
predict_gen_gamma_gamlss (fit_gen_gamma_gamlss
)
, 17
rstanarm::stan_betareg()
, 15
splines::ns()
, 14
, 15
, 18
, 19
splines::predict.ns()
, 14
, 18
stats::uniroot()
, 15
tidyselect::select_helpers
, 21
28
tocs_length
(tocs_item)
, 28
tocs_type
(tocs_item)
, 28
trapezoid_auc
, 29
uniroot_beta_gamlss (fit_beta_gamlss
)
, 13
weight\_lengths\_with\_ordinal\_model, 30
```