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check_sample_centiles
Compute the percentage of points under each centile line

Description

Compute the percentage of points under each centile line

Usage

check_sample_centiles(
data,
model,
var_x,
var_y,
centiles = c(5, 10, 25, 50, 75, 90, 95)
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Arguments
data a dataset used to fit a model. If the dataframe is grouped with dplyr: :group_by (),
sample centiles are computed for each group.
model a gamlss model prepared by mem_gamlss ()

var_x, var_y bare column names of the predictor and outcome variables

centiles centiles to use for prediction. Defaults to c(5, 10, 25, 50, 75, 90, 95).
Value
a tibble the number of points and the percentage of points less than or equal to each quantile
value.
chrono_age Compute chronological age in months
Description

Ages are rounded down to the nearest month. A difference of 20 months, 29 days is
interpreted as 20 months.

Usage

chrono_age(tl, t2)

Arguments

t1, t2 dates in "yyyy-mm-dd” format

Value

the chronological ages in months. NA is returned if the age cannot be computed.

Examples

# Two years exactly
chrono_age("2014-01-20", "2012-01-20")
#> 24

# Shift a year
chrono_age("2014-01-20", "2013-01-20")
#> 12

chrono_age("2014-01-20", "2011-01-20")
#> 36

# Shift a month
chrono_age("2014-01-20", "2012-02-20")
#> 23

chrono_age("2014-01-20", "2011-12-20")



4 compute__empirical _roc

#> 25

# 3 months exactly
chrono_age("2014-05-10", "2014-02-10")
#> 3

# Borrow a month when the earlier date has a later day
chrono_age("2014-05-10", "2014-02-11")
#> 2, equal to 2 months, 29 days rounded down to nearest month

# Inverted argument order
chrono_age("2012-01-20", "2014-01-20")
#> 24

# Multiple dates

t1 <- ¢c("2012-01-20", "2014-02-10", "2010-10-10")
t2 <- c("2014-01-20", "2014-05-10", "2014-11-10")
chrono_age(tl, t2)

#> [1] 24 3 49

compute_empirical_roc
Create an ROC curve from observed data

Description

Create an ROC curve from observed data

Usage

compute_empirical_roc(
data,
response,
predictor,
direction = "auto",
best_weights = c(1, 0.5),

)

Arguments
data a dataframe containing responses (groupings) and predictor variable
response a bare column name with the group status (control vs. cases)
predictor a bare column name with the predictor to use for classification
direction direction to set for the for pROC: :roc (). Defaults to "auto".

best_weights  weights for computing the best ROC curve points. Defaults to c¢(1, .5),
which are the defaults used by pROC: : coords ().

additional arguments passed to pROC: :roc().
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Value

a new dataframe of ROC coordinates is returned with columns for the predictor variable,
.sensitivities, .specificities, .auc, .direction, .controls, .cases, .n_controls,
.n_cases, .is_best_youden and .is_best_closest_topleft.

Examples

set.seed(100)

x1 <- rnorm(100, 4, 1)

x2 <- rnorm(100, 2, .5)

both <- c(x1, x2)

steps <- seq(min(both), max(both), length.out = 200)
dl <- dnorm(steps, mean(x1), sd(x1))

d2 <- dnorm(steps, mean(x2), sd(x2))

data <- tibble::tibble(

y = steps,
di = di,
d2 = 42,

outcome = rbinom(200, 1, prob = 1 - (d1 / (d1 + d2))),
group = ifelse(outcome, "case", "control")

# get an ROC on the fake data

compute_empirical_roc(data, outcome, y)

# this guess the cases and controls from the group name and gets it wrong
compute_empirical_roc(data, group, y)

# better

compute_empirical_roc(data, group, y, levels = c("control", "case"))

compute_predictive_value_from_rates
Compute positive and negative predictive value

Description

Compute positive and negative predictive value

Usage

compute_predictive_value_from_rates(sensitivity, specificity, prevalence)

Arguments

sensitivity, specificity, prevalence
vectors of confusion matrix rates
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Details

These vectors passed into this function should be some common length and/or length 1. For
example, 4 sensitivities, 4 specificities and 1 incidence will work because the sensitivities
and specificities have a common length and we can safely recycle (reuse) the incidence value.
But 4 sensitivities, 2 specificities, and 1 incidence will fail because there is not a common
length.

Value
a tibble with the columns sensitivity, specificity, prevalence, ppv, npv where ppv

and npv are the positive predictive value and the negative predictive value.

Examples

compute_predictive_value_from_rates(

sensitivity = .9,
specificity = .8,
prevalence = .05

)

compute_predictive_value_from_rates(
sensitivity = .67,
specificity = .53,
prevalence = c(.15, .3)

)

compute_smooth_density_roc
Create an ROC curve from smoothed densities

Description

Create an ROC curve from smoothed densities

Usage

compute_smooth_density_roc(
data,
controls,
cases,
along = NULL,
best_weights = c(1, 0.5),
direction = "auto",
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Arguments

data a dataframe containing densities

controls, cases
bare column name for the densities of the control group

along optional bare column name for the response values

best_weights  weights for computing the best ROC curve points. Defaults to c¢(1, .5),
which are the defaults used by pROC: : coords ().

direction direction to set for the for pROC: :roc (). Defaults to "auto".

additional arguments. Not used currently.

Value

the dataframe is updated with new columns for the .sensitivities, .specificities,
.auc, .roc_row, .is_best_youden and .is_best_closest_topleft.

Examples

set.seed(100)

x1 <- rnorm(100, 4, 1)

x2 <- rnorm(100, 2, .5)

both <- c(x1, x2)

steps <- seq(min(both), max(both), length.out = 200)
dl <- dnorm(steps, mean(xl), sd(x1))

d2 <- dnorm(steps, mean(x2), sd(x2))

data <- tibble::tibble(

y = steps,
dl = 41,
d2 = d2,

outcome = rbinom(200, 1, prob = 1 - (d1 / (d1 + 42))),
group = ifelse(outcome, "case", "control")
)
compute_smooth_density_roc(data, di, d42)
compute_smooth_density_roc(data, d1, d2, along = y)

# terrible ROC because the response is not present (just the densities)
data_shuffled <- datal[sample(seq_len(nrow(data))), ]
compute_smooth_density_roc(data_shuffled, d1, d2)

# sorted along response first: correct AUC
compute_smooth_density_roc(data_shuffled, di, d2, along = y)

data_example_intelligibility_by_length
Simulated intelligibility scores by utterance length
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Description

A dataset of simulated intelligibility scores for testing and demonstrating modeling func-
tions. These were created by fitting a Bayesian model of the raw Hustad and colleagues
(2020) and drawing 1 sample from the posterior distribution of expected predictions (i.e.,
"epreds). In other words, these values are model predictions of the original dataset. They
are correlated with original dataset values at r = .86. We might think of the simulation as
adding random noise to the original dataset.

Usage

data_example_intelligibility_by_length

Format

A data frame with 694 rows and 5 variables:

child identifier for the child

age__months child’s age in months

length_ longest length of the child’s longest utterance
tocs__level utterance length

sim__intelligibility child’s intelligibility for the given utterance length (proportion of
words said by the child that were correctly transcribed by two listeners)

References

Hustad, K. C., Mahr, T., Natzke, P. E. M., & Rathouz, P. J. (2020). Development of
Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-
Sectional Study of Growth. Journal of Speech, Language, and Hearing Research, 63(6),
1675-1687. https://doi.org/10.1044/2020_ JSLHR~20-00008

data_fake_intelligibility
Fake intelligibility data

Description

A dataset of fake intelligibility scores for testing and demonstrating modeling functions.
These were created by randomly sampling 200 rows of an intelligibility dataset and adding
random noise to the age_months and intelligibility variables. These values do not
measure any real children but represent plausible age and intelligibility measurements from
our kind of work.

Usage

data_fake_intelligibility
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Format
A data frame with 200 rows and 2 variables:

age_ months child’s age in months

intelligibility child’s intelligibility (proportion of words said by the child that were cor-
rectly transcribed by two listeners)

data_fake_rates Fake speaking rate data

Description

A dataset of fake speaking rate measures for testing and demonstrating modeling functions.
These were created by randomly sampling 200 rows of a speaking rate dataset and adding
random noise to the age_months and speaking_sps variables. These values do not measure
any real children but represent plausible age and rate measurements from our kind of work.

Usage

data_fake_rates

Format
A data frame with 200 rows and 2 variables:

age__months child’s age in months

speaking sps child’s speaking rate in syllables per second

data_features_consonants
Phonetic features of consonants and vowels

Description
These are two dataframes that contain conventional phonetic features of the consonants
and vowels used by CMU phonetic alphabet.

Usage

data_features_consonants

data_features_vowels

Format

An object of class tbl_df (inherits from tbl, data.frame) with 24 rows and 10 columns.
An object of class tbl_df (inherits from tbl, data.frame) with 17 rows and 12 columns.
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Details

data_features consonants

Most of the features are self-evident and definitional. For example, /p/ is the bilabial
voiceless stop. For fuzzier features, I consulted the general IPA chart and the Wikipedia
page on English phonology. These issues included things like: what are the lax vowels again?
or the last two rows of the consonant tables are approximants, so /r,lj/ are approximants.

Some features have alternative feature sets in order to accommodate degrees of aggrega-
tion. For example, /r,1,j,w/ are approzimant in manner but divided into liquid and glide in

manner_alt.

Consonants:

data_features_consonants is a dataframe with 24 rows and 10 variables.

knitr::kable(data_features_consonants)

phone cmubet wiscbet voicing

p P voiceless

b B b voiced

t T t voiceless

d D d voiced

k K k voiceless

g G g voiced

t CH tsh voiceless

d JH dzh voiced

m M m voiced

n N n voiced

iy NG ng voiced

f F f voiceless

v \% v voiced
TH th voiceless

0 DH dh voiced

S S S voiceless

Z Z Z voiced
SH sh voiceless
ZH zh voiced

h HH h voiceless

1 L 1 voiced

r R r voiced

W w W voiced

j Y j voiced

Description of each column:

phone phone in IPA

manner
stop

stop

stop

stop

stop

stop
affricate
affricate
nasal

nasal

nasal
fricative
fricative
fricative
fricative
fricative
fricative
fricative
fricative
fricative
approximant
approximant
approximant
approximant

cmubet phone in the CMU alphabet

wiscbet phone in an older system used by our lab

voicing wvoiced versus voiceless

voicing _alt spread_ glottis versus plain

manner__alt
stop
stop
stop
stop
stop
stop
affricate
affricate
nasal
nasal
nasal
fricative
fricative
fricative
fricative
fricative
fricative
fricative
fricative
fricative
liquid
liquid
glide
glide

place

labial

labial
alveolar
alveolar
velar

velar
postalveolar
postalveolar
labial
alveolar
velar
labiodental
labiodental
dental
dental
alveolar
alveolar
postalveolar
postalveolar
glottal
alveolar
postalveolar
labiovelar
palatal

place_ fct
labial

labial
alveolar
alveolar
velar

velar
postalveolar
postalveolar
labial
alveolar
velar
labiodental
labiodental
dental
dental
alveolar
alveolar
postalveolar
postalveolar
glottal
alveolar
postalveolar
NA

palatal

sonorance
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
sonorant

sonorant

sonorant

obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
obstruent
sonorant

sonorant

sonorant

sonorant

SOT(
obst
obst
obst
obst
obst
obst
stric
stric
SOT(
son
SOT(
stri
stric
obsf
obst
stri
stri
stric
stri
obst
son
SOT(
SOT(
SOT(
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manner manner of articulation

manner__alt alternative manner coding that separates approximants into liquids and
glides

place place of articulation

place_ fct place coded as a factor and ordered based on frontness of the articulators.
labiovelar is recoded as NA.

sonorance obstruent versus sonorant

sonorance__alt obstruant versus sonorant versus strident.

Levels of the factor columns:

data_features_consonants |>
lapply(levels) |>
Filter(length, x = _)
#> $place_fct
#> [1] "labial" "labiodental" "dental" "alveolar" "postalveolar"
#> [6] "palatal" "velar" "glottal"

Considerations about consonant features:
The CMU alphabet does not include a glottal stop.

Here /f,v/ are coded as strident following Wikipedia and Sound Pattern of English. If this
feature value doesn’t seem right, we should probably use an alternative feature of sibilant
for the stridents minus /f,v/.

The alternative voicing scheme was suggested by a colleague because of how the voice-
voiceless phonetic contrast is achieved with different articulatory strategies in different
languages. Note that voicing_alt does not assign a feature to nasals or approximants.

Vowels:
data_features_vowels is a dataframe with 17 rows and 11 variables.

knitr::kable(data_features_vowels)

phone cmubet wiscbet hint manner manner_alt tenseness  height height_ fct
i 1Y i beat vowel vowel tense high high
IH I bit vowel vowel lax high high
e EY el bait vowel vowel tense mid mid
EH E bet vowel vowel lax mid mid
® AE ae bat vowel vowel lax low low
AH - but vowel vowel lax mid mid
) AH 4 comma vowel vowel lax mid mid
u UW u boot vowel vowel tense high high
UH U book vowel vowel lax high high
0 ow oU boat vowel vowel tense mid mid
AO ¢ bought  vowel vowel tense mid mid
AA Q bot vowel vowel tense low low
a AW Qu bout vowel diphthong diphthong diphthong NA
a AY @I bite vowel diphthong diphthong diphthong NA

oYy cl boy vowel diphthong diphthong diphthong NA

backness |
front 1
front 1
front 1
front 1
front 1
central [
central [
back ]
back ]
back 1
back 1
back ]
diphthong |
diphthong |
diphthong |


https://en.wikipedia.org/wiki/Sibilant
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ER 3~ letter vowel r-colored r-colored mid mid central
ER 4~ burt vowel r-colored r-colored mid mid central

Description of each column:

phone phone in IPA

cmubet phone in the CMU alphabet

wiscbet phone in an older system used by our lab

hint a word containing the selected vowel

manner manner of articulation

manner__alt alternative manner with vowel, diphthong and r-colored

tenseness tense versus laz (versus diphthong and r-colored)

height vowel height

height_ fct height coded as a factor ordered high, mid, low. diphthong is recoded to NA.
backness vowel backness

backness_ fct backness coded as a factor ordered front, central, back. diphthong is re-
coded to NA.

rounding unrounded versus rounded (versus diphthong and r-colored)

Levels of the factor columns:

data_features_vowels [>
lapply(levels) |>
Filter(length, x = _)

#> $height_fct

#> [1] "high" "mid" "low"

#>
#> $backness_fct
#> [1] "front" "central" "back"

Considerations about vowel features:

I don’t consider /e / and /o / to be diphthongs, but perhaps manner_alt could encode
the difference of these vowels from the others.

In the CMU alphabet and ARPAbet, vowels can include a number to indicate vowel stress,
so AH1 or AH2 is / / but AHO is /o/.

The vowel features for General American English, according to Wikipedia, are as follows:
I adapted these features in this way:

e tense and lax features were directly borrowed. Diphthongs and r-colored vowels are

were not assign a tenseness.

e /,/ raised to mid (following the general IPA chart)

o / / moved to back (following the general TPA)

« diphthongs have no backness or height

o 1-colored vowels were given the backness and height of the / jo/

Based on the assumption that / jo/ are the same general vowel with differing stress, these
vowels have the same features. This definition clashes with the general IPA chart which
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fit_beta__gamlss 13

places / / as a back vowel. However, / / is a conventional notation. Quoting Wikipedia
again: ”Although the notation / / is used for the vowel of STRUT in RP and General
American, the actual pronunciation is closer to a near-open central vowel [] in RP and
advanced back [ ] in General American.” That is, / / is fronted in American English (hence,
mid) in American English.

fit_beta_gamlss Fit a beta regression model (for intelligibility)

Description

The function fits the same type of GAMLSS model as used in Hustad and colleagues (2021):
A beta regression model (via gamlss.dist::BE()) with natural cubic splines on the mean
(mu) and scale (sigma). This model is fitted using this package’s mem_gamlss() wrapper
function.

Usage

fit_beta_gamlss(data, var_x, var_y, df_mu = 3, df_sigma = 2, control = NULL)

fit_beta_gamlss_se(
data,
name_x,
name_y,
df _mu = 3,
df_sigma = 2,
control = NULL

predict_beta_gamlss(newdata, model, centiles = c(5, 10, 50, 90, 95))

optimize_beta_gamlss_slope(

model,
centiles = 50,
interval = c(30, 119),

maximum = TRUE

uniroot_beta_gamlss(model, centiles = 50, targets = 0.5, interval = c(30, 119))

Arguments
data a data frame
var_x, var_y (unquoted) variable names giving the predictor variable (e.g., age) and

outcome variable (.e.g, intelligibility).


https://en.wikipedia.org/wiki/English_phonology
https://doi.org/10.1044/2021_JSLHR-21-00142

14 fit__beta__gamlss

df_mu, df _sigma
degrees of freedom. If 0 is used, the splines: :ns() term is dropped from
the model formula for the parameter.

control a gamlss::gamlss.control() controller. Defaults to NULL which uses
default settings, except for setting trace to FALSE to silence the output
from gamlss.

name_x, name_y quoted variable names giving the predictor variable (e.g., "age") and
outcome variable (.e.g, "intelligibility"). These arguments apply to
fit_beta_gamlss_se().

newdata a one-column dataframe for predictions

model a model fitted by fit_beta_gamlss()

centiles centiles to use for prediction. Defaults to c(5, 10, 50, 90, 95) for predict_beta_gamlss().
Defaults to 50 for optimize_beta_gamlss_slope() and uniroot_beta_gamlss(),
although both of these functions support multiple centile values.

interval for optimize_beta_gamlss_slope(), the range of x values to optimize
over. For uniroot_beta_gamlss(), the range of x values to search for
roots (target y values) in.

maximum for optimize_beta_gamlss_slope (), whether to find the maximum slope
(TRUE) or minimum slope (FALSE).

targets for uniroot_beta_gamlss(), the target y values to use as roots. By
default, .5 is used, so that uniroot_beta_gamlss() returns the x value
where the y value is .5. Multiple targets are supported.

Details

There are two versions of this function. The main version is fit_beta_gamlss(), and it

works with unquoted column names (e.g., age). The alternative version is fit_beta_gamlss_se();

the final "se” stands for "Standard Evaluation”. This designation means that the variable
names must be given as strings (so, the quoted "age" instead of bare name age). This
alternative version is necessary when we fit several models using parallel computing with
furrr::future_map() (as when using bootstrap resampling).

predict_centiles() will work with this function, but it will likely throw a warning
message. Therefore, predict_beta_gamlss() provides an alternative way to compute
centiles from the model. This function manually computes the centiles instead of re-
lying on gamlss::centiles(). The main difference is that new z values go through
splines::predict.ns() and then these are multiplied by model coefficients.

optimize_beta_gamlss_slope () computes the point (i.e., age) and rate of steepest growth
for different quantiles. This function wraps over the following process:
e an internal prediction function computes a quantile at some x from model coefficients
and spline bases.

o another internal function uses numDeriv: :grad () to get the gradient of this prediction
function for x.

e optimize_beta_gamlss_slope() uses stats::optimize() on the gradient function
to find the x with the maximum or minimum slope.
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uniroot_beta_gamlss() also uses this internal prediction function to find when a quantile
growth curve crosses a given value. stats::uniroot() finds where a function crosses 0
(a root). If we modify our prediction function to always subtract .5 at the end, then the
root for this prediction function would be the x value where the predicted value crosses .5.
That’s the idea behind how uniroot_beta_gamlss() works. In our work, we would use
this approach to find, say, the age (root) when children in the 10th percentile (centiles)
cross 50% intelligibility (targets).

GAMLSS does beta regression differently:

This part is a brief note that GAMLSS uses a different parameterization of the beta
distribution for its beta family than other packages.

The canonical parameterization of the beta distribution uses shape parameters a and
and the probability density function:

flya.8) = m——=

where B is the beta function.

For beta regression, the distribution is reparameterized so that there is a mean probability
1 and some other parameter that represents the spread around that mean. In GAMLSS
(gamlss.dist::BE()), they use a scale parameter o (larger values mean more spread
around mean). Everywhere else—betareg: :betareg() and rstanarm: :stan_betareg()
in vignette("betareg", "betareg"), brms::Beta() in vignette("brms_families",
"brms"), mgcv: :betar ()—it’s a precision parameter ¢ (larger values mean more preci-
sion, less spread around mean). Here is a comparison:

betareg, brms, mgev, etc.u = a/(a + )¢ = a + bE(y) = pVAR(y) = p(1 — pn)/(1 + ¢)

GAMLSSu = o/(a + B)o = (1 + B+ 1)) 5E(y) = uVAR(y) = (1 — p)o

Value

for fit_beta_gamlss() and fit_beta_gamlss_se(), a mem_gamlss ()-fitted model. The

.user data in the model includes degrees of freedom for each parameter and the splines: :ns()

basis for each parameter. For predict_beta_gamlss(), a dataframe containing the model

predictions for mu and sigma, plus columns for each centile in centiles. For optimize_beta_gamlss_slope(),
a dataframe with the optimized x values (maximum or minimum), the gradient at that x value

(objective), and the quantile (quantile). For uniroot_beta_gamlss(), a dataframe one

row per quantile/target combination with the results of calling stats::uniroot(). The

root column is the x value where the quantile curve crosses the target value.

Source

Associated article: https://doi.org/10.1044/2021_JSLHR-21-00142
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Examples

data_fake_intelligibility

m <- fit_beta_gamlss(
data_fake_intelligibility,
age_months,
intelligibility

)

# using "qr" in summary() just to suppress a warning message
summary(m, type = "qr")

# Alternative interface
d <- data_fake_intelligibility
m2 <- fit_beta_gamlss_se(

data = d,

name_x = "age_months",
name_y = "intelligibility"

)

coef (m2) == coef(m)

# how to use control to change gamlss() behavior
m_traced <- fit_beta_gamlss(
data_fake_intelligibility,
age_months,
intelligibility,
control = gamlss::gamlss.control(n.cyc = 15, trace = TRUE)

# The ~.user” space includes the spline bases, so that we can make accurate
# predictions of new xs.
names (m$ . user)

# predict logit(mean) at 55 months:

logit_mean_55 <- cbind(1l, predict(m$.user$basis_mu, 55)) %x*} coef (m)
logit_mean_55

stats::plogis(logit_mean_55)

# But predict_gen_gamma_gamlss() does this work for us and also provides
# centiles

new_ages <- data.frame(age_months = 48:71)

centiles <- predict_beta_gamlss(new_ages, m)

centiles

# Confirm that the manual prediction matches the automatic one
centiles[centiles$age_months == 55, "mu"]
stats::plogis(logit_mean_55)

if (requireNamespace("ggplot2", quietly = TRUE)) {
library(ggplot2)
ggplot(pivot_centiles_longer(centiles)) +
aes(x = age_months, y = .value) +



fit_gen_gamma_gamlss 17

geom_line(aes(group = .centile, color = .centile_pair)) +
geom_point (
aes(y = intelligibility),
data = subset(
data_fake_intelligibility,
48 <= age_months & age_months <= 71
)

# Age of steepest growth for each centile
optimize_beta_gamlss_slope(

model = m,

centiles = c(5, 10, 50, 90),

interval = range(data_fake_intelligibility$age_months)

# Manual approach: Make fine grid of predictions and find largest jump
centiles_grid <- predict_beta_gamlss(
newdata = data.frame(age_months = seq(28, 95, length.out = 1000)),
model = m
)

centiles_grid[which.max(diff (centiles_grid$c5)), "age_months"]

# When do children in different centiles reach 50%, 70% intelligibility?
uniroot_beta_gamlss(

model = m,

centiles = c(5, 10, 50),

targets = c(.5, .7)
)

fit_gen_gamma_gamlss Fit a generalized gamma regression model (for speaking rate)

Description

The function fits the same type of GAMLSS model as used in Mahr and colleagues (2021):
A generalized gamma regression model (via gamlss.dist::GG()) with natural cubic splines
on the mean (mu), scale (sigma), and shape (nu) of the distribution. This model is fitted
using this package’s mem_gamlss () wrapper function.

Usage

fit_gen_gamma_gamlss(
data,
var_x,
var_y,
df mu = 3,
df_sigma = 2,
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df nu =1,

control NULL

fit_gen_gamma_gamlss_se(
data,
name_x,
name_y,
df mu = 3,
df_sigma = 2,
df nu =1,

control NULL

predict_gen_gamma_gamlss(newdata, model, centiles = c(5, 10, 50, 90, 95))

Arguments
data a data frame
var_x, var_y (unquoted) variable names giving the predictor variable (e.g., age) and

outcome variable (.e.g, rate).

df_mu, df _sigma, df _nu
degrees of freedom. If 0 is used, the splines: :ns() term is dropped from
the model formula for the parameter.

control a gamlss::gamlss.control() controller. Defaults to NULL which uses
default settings, except for setting trace to FALSE to silence the output
from gamlss.

name_x, name_y quoted variable names giving the predictor variable (e.g., "age") and out-
come variable (.e.g, "rate"). These arguments apply to fit_gen_gamma_gamlss_se().

newdata a one-column dataframe for predictions

model a model fitted by fit_gen_gamma_gamlss ()

centiles centiles to use for prediction. Defaults to ¢(5, 10, 50, 90, 95).
Details

There are two versions of this function. The main version is fit_gen_gamma_gamlss (), and

it works with unquoted column names (e.g., age). The alternative version is fit_gen_gamma_gamlss_se();
the final ”se” stands for "Standard Evaluation”. This designation means that the variable

names must be given as strings (so, the quoted "age" instead of bare name age). This

alternative version is necessary when we fit several models using parallel computing with
furrr::future_map() (as when using bootstrap resampling).

predict_centiles() will work with this function, but it will likely throw a warning
message. Therefore, predict_gen_gamma_gamlss() provides an alternative way to com-
pute centiles from the model. This function manually computes the centiles instead of
relying on gamlss::centiles(). The main difference is that new x values go through
splines: :predict.ns() and then these are multiplied by model coefficients.
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Value

for fit_gen_gamma_gamlss() and fit_gen_gamma_gamlss_se(), a mem_gamlss()-fitted
model. The .user data in the model includes degrees of freedom for each parameter
and the splines::ns() basis for each parameter. For predict_gen_gamma_gamlss(), a
dataframe containing the model predictions for mu, sigma, and nu, plus columns for each
centile in centiles.

Source

Associated article: https://doi.org/10.1044/2021_JSLHR-21-00206
Examples

data_fake_rates

m <- fit_gen_gamma_gamlss(data_fake_rates, age_months, speaking_sps)

# using "qr" in summary() just to suppress a warning message
summary (m, type = "qr")

# Alternative interface
d <- data_fake_rates
m2 <- fit_gen_gamma_gamlss_se(

data = d,
name_x = "age_months",
name_y = "speaking_sps"
)
coef (m2) == coef(m)

# how to use control to change gamlss() behavior
m_traced <- fit_gen_gamma_gamlss(
data_fake_rates,
age_months,
speaking_sps,
control = gamlss::gamlss.control(n.cyc = 15, trace = TRUE)

# The ~.user” space includes the spline bases, so that we can make accurate
# predictions of new xs.
names (m$.user)

# predict log(mean) at 55 months:

log_mean_55 <- cbind(1, predict(m$.user$basis_mu, 55)) %*% coef (m)
log_mean_55

exp(log_mean_55)

# But predict_gen_gamma_gamlss() does this work for us and also provides
# centiles

new_ages <- data.frame(age_months = 48:71)

centiles <- predict_gen_gamma_gamlss(new_ages, m)

centiles
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# Confirm that the manual prediction matches the automatic one
centiles[centiles$age_months == 55, "mu"]
exp(log_mean_55)

if (requireNamespace ("ggplot2", quietly = TRUE)) {

library(ggplot2)
ggplot(pivot_centiles_longer(centiles)) +
aes(x = age_months, y = .value) +
geom_line(aes(group = .centile, color = .centile_pair)) +

geom_point (
aes(y = speaking_sps),
data = subset(
data_fake_rates,
48 <= age_months & age_months <= 71
)

# Example of 0-df splines

m <- fit_gen_gamma_gamlss (
data_fake_rates,
age_months,
speaking_sps,

df _mu = O,

df_sigma = 2,

df nu =0
)
coef (m, what = "mu"
coef(m, what = "sigma")
coef (m, what = "nu")

# mu and nu fixed, c50 mostly locked in
predict_gen_gamma_gamlss(new_ages, m) [c(1, 9, 17, 24), ]

fit_kmeans Run (scaled) k-means on a dataset.

Description

Observations are scale()-ed before clustering.

Usage

fit_kmeans(data, k, vars, args_kmeans = 1list())

Arguments

data a dataframe

k number of clusters to create
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vars variable selection for clustering. Select multiple variables with c(), e.g.,
c(x, y). The selection supports tidyselect semantics tidyselect::select__helpers,
e.g., c(x, starts_with("mean_").

args_kmeans additional arguments passed to stats: :kmeans().

Details

Note that each variable is scaled() before clustering and then cluster means are unscaled
to match the original data scale.

This function provides the original kmeans labels as . kmeans_cluster but other alternative
labeling based on different sortings of the data. These are provided in order to deal with
label-swapping in Bayesian models. See bootstrapping example below.

Value

the original data but augmented with additional columns for clustering details. including
.kmeans_cluster (cluster number of each observation, as a factor) and .kmeans_k (selected
number of clusters).

Cluster-level information is also included. For example, suppose that we cluster using the
variable x. Then the output will have a column .kmeans_x giving the cluster mean for x
and .kmeans_rank_x giving the cluster labels reordered using the cluster means for x. The
column .kmeans_sort contains the cluster sorted using the first principal component of the
scaled variables. All columns of cluster indices are a factor() so that they can be plotted
as discrete variables.

Examples

data_kmeans <- fit_kmeans(mtcars, 3, c(mpg, wt, hp))

library(ggplot2)

ggplot(data_kmeans) +
aes(x = wt, y = mpg) +
geom_point (aes(color

.kmeans_cluster))

ggplot (data_kmeans) +
aes(x = wt, y = mpg) +
geom_point (aes(color

.kmeans_rank_wt))

# Example of label swapping
set.seed(123)
data_boots <- lapply(
1:10,
function(x) {
rows <- sample(seq_len(nrow(mtcars)), replace = TRUE)
data <- mtcars[rows, ]
data$.bootstrap <- x
data
}
) 1>
lapply(fit_kmeans, k = 3, c(mpg, wt, hp)) [>
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dplyr::bind_rows() |>
dplyr::select(.bootstrap, dplyr::starts_with(".kmeans_")) [>
dplyr::distinct()

# Clusters start off in random locations and move to center, so the labels
# differ between model runs and across bootstraps.
ggplot(data_boots) +

aes(x = .kmeans_wt, y = .kmeans_mpg) +
geom_point(aes(color = .kmeans_cluster)) +
labs(title = "k-means centers on 10 bootstraps")

# Labels sorted using first principal component
# so the labels are more consistent.
ggplot(data_boots) +

aes(x = .kmeans_wt, y = .kmeans_mpg) +
geom_point (aes(color = .kmeans_sort)) +
labs(title = "k-means centers on 10 bootstraps")

format_year_month_age
Convert age in months to years;months

Description

Convert age in months to years;months

Usage

format_year_month_age (x)

Arguments

X a vector ages in months

Details

Ages of NA return "NA;NA".

This format by default is not numerically ordered. This means that c("2;0", "10;10",
"10;9") would sort as c("10;10", "10;9", "2;0"). The function stringr: :str_sort(...,
numeric = TRUE) will sort this vector correctly.

Value

ages in the years;months format

Examples

ages <- c(26, 58, 25, 67, 21, 59, 36, 43, 27, 49)
format_year_month_age (ages)
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impute_values_by_length
Staged imputation

Description

Impute missing data at different utterance lengths using successive linear models.

Usage

impute_values_by_length(
data,
var_y,
var_length,
id_cols = NULL,
include_max_length = FALSE,
data_train = NULL

)
Arguments
data dataframe in which to impute missing value
var_y bare name of the response variable for imputation
var_length bare name of the length variable
id_cols a selection of variable names that uniquely identify each group of related

observations. For example, c(child_id, age_months).

include_max_length

whether to use the maximum length value as a predictor in the imputation
models. Defaults to FALSE.

data_train (optional) dataframe used to train the imputation models. For example,
we might have data from a reference group of children in data_train but
a clinical population in data. If omitted, the dataframe in data is used
to train the models. data_train can also be a function. In this case, it
is applied to the data argument in order to derive (filter) a subset of the
data for training.

Value

a dataframe with the additional columns {var_y}_imputed (the imputed value), .max_{var_length}
with the highest value of var_length with observed data, and {var_y}_imputation for
labeling whether observations were "imputed" or "observed".



24 impute_values by _length

Background

In Hustad and colleagues (2020), we modeled intelligibility data in young children’s speech.
Children would hear an utterance and then they would repeat it. The utterances started at
2 words in length, then increased to 3 words in length, and so on in batches of 10 sentences,
all the way to 7 words in length. There was a problem, however: Not all of the children
could produce utterances at every length. Specifically, if a child could not reliably produced
5 utterances of a given length length, the task was halted. So given the nature of the task,
if a child had produced 5-word utterances, they also produced 2-4-word utterances as well.

The length of the utterance probably influenced the outcome variable: Longer utterances
have more words that might help a listener understand the sentence, for example. Therefore,
it did not seem appropriate to ignore the missing values. We used the following two-step
procedure (see the Supplemental Materials for more detail):

Other notes:

Remark about data and data_train: One might ask, why shouldn’t some children help
train the data imputation models? Let’s consider a norm-referenced standardized testing
scenario: We have a new participant (observations in data), and we want to know how they
compare to their age peers (participants in data_train). By separating out data_train
and fixing it to a reference group, we can apply the same adjustment/imputation proce-
dure to all new participants.

References

Hustad, K. C.;, Mahr, T., Natzke, P. E. M., & Rathouz, P. J. (2020). Development of
Speech Intelligibility Between 30 and 47 Months in Typically Developing Children: A Cross-
Sectional Study of Growth. Journal of Speech, Language, and Hearing Research, 63(6),
1675-1687. https://doi.org/10.1044/2020__JSLHR-20-00008

Hustad, K. C., Mahr, T., Natzke, P. E. M., & J. Rathouz, P. (2020). Supplemental Material
S1 (Hustad et al., 2020). ASHA journals. https://doi.org/10.23641/asha.12330956.v1

Examples

set.seed(1)
fake_data <- tibble::tibble(

child = c(
lla|l , llall , llall . |la|| . Ilall .
llbll s llbll , llbll . Ilbll . Ilbll ,
"C", llcll, "C", "C", IlCII’
lleH, llell, llell, |le||, Ilell’

llfll’ llfll’ llfll, Ilfll’ Ilfll,
ngll llgll llgn Ilgll Ilgll
nh" nh" nh" nh" Ll

RE L T L R
),
level = c(1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5, 1:5),
x = c(

c(100, 110, 120, 130, 150) + c(-8, -5, 0, NA, NA),
c(100, 110, 120, 130, 150) + c(6, 6, 4, NA, NA),

c(100, 110, 120, 130, 150) + c(-5, -5, -2, 2, NA),
c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,


https://doi.org/10.23641/asha.12330956.v1

join__to_ split 25

c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6,
c(100, 110, 120, 130, 150) + rbinom(5, 12, .5) - 6
)
)
data_imputed <- impute_values_by_length(
fake_data,
X,
level,
id_cols = c(child),
include_max_length = FALSE
)
if (requireNamespace("ggplot2")) {
library(ggplot2)
ggplot(data_imputed) +
aes(x = level, y = x_imputed) +
geom_line(aes(group = child)) +
geom_point (aes(color = x_imputation))
}
join_to_split Join data onto resampled IDs
Description
Join data onto resampled IDs
Usage
join_to_split(x, y, by, validate = FALSE)
Arguments
X an rset object created by rsample: :bootstraps()
y y dataframe with a column of the id values which was resampled to create
X
by the name of column in y with the data
validate whether to validate the join by counting the number of rows associated
with each id. Defaults to FALSE.
Value

the original rset object with its x$data updated to join with y and with the row numbers
x$in_id updated to work on the expanded dataset.
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Examples
library(dplyr)
data_trees <- tibble::as_tibble(datasets: :0range)
data_tree_ids <- distinct(data_trees, Tree)
# Resample ids
data_bootstraps <- data_tree_ids %>%
rsample: :bootstraps(times = 20) %>%
rename(splits_id = splits) %>¥%
# Attach data to resampled ids
mutate (
data_splits = splits_id %>% purrr::map(
join_to_split,
data_trees,
by = "Tree",
validate = TRUE
)
)
data_bootstraps
logitnorm_mean Compute the mean of logit-normal distribution(s)
Description
This function is a wrapper around logitnorm: :momentsLogitnorm().
Usage
logitnorm_mean(mu, sigma)
Arguments
mu mean(s) on the logit scale
sigma standard deviation(s) on the logit scale
Value
the means of the distributions
Examples

x <- logitnorm_mean(2, 1)
X

# compare to simulation
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set.seed(100)
rnorm(1000, 2, 1) [|> plogis() |> mean()

mem_gamlss Fit a gamlss model but store user data

Description

Think of it as a gamlss model with memories (mem. gamlss).

Usage

mem_gamlss(...)

Arguments

arguments passed to gamlss::gamlss()

Value

the fitted model object but updated to include user information in model$.user. Includes
the dataset used to fit the model model$.user$data, the session info model$.user$session_info
and the call used to fit the model model$.user$call. model$call is updated to match

predict_centiles Predict and tidy centiles from a GAMLSS model

Description

gamlss has trouble doing predictions without the original training data.

Usage

predict_centiles(newdata, model, centiles = c(5, 10, 50, 90, 95), ...)

pivot_centiles_longer (data)

Arguments
newdata a one-column dataframe for predictions
model a gamlss model prepared by mem_gamlss ()
centiles centiles to use for prediction. Defaults to c(5, 10, 50, 90, 95).

arguments passed to gamlss::centiles.pred()

data centile predictions to reshape for pivot_centiles_longer ()
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tocs item
Value

a tibble with fitted centiles for predict_centiles() and a long-format tibble with one
centile value per row in pivot_centiles_longer ()

tocs_item Eztract the TOCS details from a string (usually a filename)

Description

Extract the TOCS details from a string (usually a filename)

Usage

tocs_item(xs)
tocs_type(xs)

tocs_length(xs)

Arguments

XS a character vector

Value

tocs_item() returns the substring with the TOCS item, tocs_type() returns whether

the item is "single-word" or "multiword", and tocs_length() returns the length of the
TOCS item (i.e., the number of words).

Examples

x <- c(
"XXv16s7T06.1lab", "XXv15s5T06.TextGrid", "XXv13s3T10.WAV",
"XXv18wT11l.wav", "non-matching", "s2TO01"
)
data.frame(
X = X,
item = tocs_item(x),
type = tocs_type(x),
length = tocs_length(x)
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trapezoid_auc Compute AUCs using the trapezoid method

Description

Compute AUCs using the trapezoid method

Usage

trapezoid_auc(xs, ys)

partial_trapezoid_auc(xs, ys, x1lim)

Arguments

XS, ys x and y positions

x1lim two-element vector (a range) of the xs to sum over
Value

the area under the curve computed using the trapezoid method. For partial_trapezoid_auc(),
the partial area under the curve is computed.

Examples

if (requireNamespace("rstanarm", quietly = TRUE)) {
wells <- rstanarm::wells
r <- pROC::roc(switch ~ arsenic, wells)
pROC: :auc(r)
trapezoid_auc(r$specificities, r$sensitivities)

PROC: :auc(r, partial.auc = c(.9, 1), partial.auc.focus = "sp")
partial_trapezoid_auc(r$specificities, r$sensitivities, c(.9, 1))

pPROC: :auc(r, partial.auc = c(.9, 1), partial.auc.focus = "se")
partial_trapezoid_auc(r$sensitivities, r$specificities, c(.9, 1))

PROC: :auc(r, partial.auc = c(.1, .9), partial.auc.focus = "sp")
partial_trapezoid_auc(r$specificities, r$sensitivities, c(.1, .9))

PROC: :auc(r, partial.auc = c(.1, .9), partial.auc.focus = "se")
partial_trapezoid_auc(r$sensitivities, r$specificities, c(.1, .9))
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weight_lengths_with_ordinal_model
Weight utterance lengths by using an ordinal regression model

Description

For each participant, we find their length of longest utterance. We predict this longest
utterance length as a nonlinear function of some variable, and we compute the probability
of reaching each utterance length at each value of the predictor variable. These probabilities
are then normalized to provide weights for each utterance length.

Usage

weight_lengths_with_ordinal_model(
data_train,
var_length,

var_x,
id_cols,
spline_df = 2,
data_join = NULL
)
Arguments
data_train dataframe used to train the ordinal model. data_train can also be a
function. In this case, it is applied to the data_join argument in order
to derive (filter) a subset of the data for training.
var_length bare name of the length variable. For example, tocs_level.
var_x bare name of the predictor variable. For example, age_months.
id_cols a selection of variable names that uniquely identify each group of related
observations. For example, c(child_id, age_months).
spline_df number of degrees of freedom to use for the ordinal regression model.
data_join (optional) dataset to use join the weights onto. This feature is necessary
because we want to train a dataset on the observed data but supply the
weights to the dataset with missing values imputed.
Value

the probability and weights of each utterance length at each observed value of var_x.
These are in the added columns {var_length}_prob_reached and {var_length}_weight,
respectively.
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Examples

data_weights <- weight_lengths_with_ordinal_model(
data_example_intelligibility_by_length,
tocs_level,
age_months,
child,
spline_df = 2

)

if (requireNamespace("ggplot2")) {
library(ggplot2)
pl <- ggplot(data_weights) +
aes(x = age_months, y = tocs_level_prob_reached) +
geom_line(aes(color = ordered(tocs_level)), linewidth = 1) +

scale_color_ordinal(end = .85) +

labs(y = "Prob. of reaching length", color = "Utterance length")
print(pl)
p2 <- pl +

aes(y = tocs_level_weight) +
labs(y = "Weight of utterance length")
print (p2)
}
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