Package: littlelisteners (via r-universe)

September 10, 2024

Title Helper Functions for Hand-coded Eyetracking Data
Version 0.0.0.9000

Description This package houses frequently used functions for working
with hand-coded eyetracking data.

Depends R (>=4.1.0)
License MIT + file LICENSE
LazyData true

RoxygenNote 7.3.2

Imports dplyr, ggplot2, readr, stringr, tidyr, tidyselect, tibble,
rlang, meltr

Roxygen list(markdown = TRUE)
Encoding UTF-8

URL http://www.tjmahr.com/littlelisteners/
Config/Needs/website rmarkdown

Suggests rprime, tidyverse

Repository https://tjmahr.r-universe.dev

RemoteUrl https://github.com/tjmahr/littlelisteners
RemoteRef HEAD

RemoteSha 9eaf3e9796428adf30a6f128bb497275e86b9c49

Contents

add_aois e e e e e e
adjust_times e e e
adjust_times_around_zZeroo e e e e e e e
aggregate_1ooks
assign_bins e
convert_datawiz_code to_aoi
CIEAtE_A01 . . . o v v v v o e e e
create_response_def L.

http://www.tjmahr.com/littlelisteners/

2 add_aois
cycle_response_def e 9
empirical_logit L 10
example_files e 11
four_image_data e 11
interpolate_looks L. e e 12
melt_datawiz e e e 13
read_datawiz e e 14
read_gazedata L. 15
SE_PIOD . v v e e e e e e e e e e e 16
trim_to_bin_width e 17

Index 19

add_aois Map the x and y positions of looks to Areas of Interest.

Description

Map the x and y positions of looks to Areas of Interest.
Usage
add_aois(x, aois, default_onscreen = "tracked")
Arguments
X a dataframe of looking data
aois an AOI or list of AOIs
default_onscreen
default label to use for a look onscreen that does not fall into an AOI. Default is
"tracked”
Details
The function current assumes the conventions used in our lab. It will create a column called
GazeByAOI with the label of the AOI for each look. It does this by checking whether the columns
XMean and YMean fall into to the boundaries of the AOI.
Offscreen looks receive NA.
Value

an updated dataframe

adjust_times

adjust_times

Adjust looking times relative to some event

Description

This function is useful if some critical event occurs each trial, and we would like to adjust the
timestamps so that they are relative to that event time.

Usage

adjust_times(
data,

time_var = quote(Time),
event_var = NULL,

align = TRUE,
fps = 60,

ties = "first”

Arguments

data
time_var

event_var

align

fps

ties

Value

a long data frame of looking data
a column in data with looking times (assumed to be milliseconds).
a column in data with the time of some event

grouping variables. The grouping variables should uniquely specify a trial of
eyetracking data.

whether to align the eyetracking times so that the frame closest to the event time
gets time = 0.

the eyetracking sampling rate. Defaults to 60 frames per second.

how to break ties when the smallest times are equally close to zero. Default is
"first"” so that the tie c(-1, 1) is aligned to c(0, 2).

the looking data with the times adjusted by event times. By default, these times are aligned so that
the frame closest to the event time gets value 0.

Examples

Consider some raw tims from an eyetrack. For each trial, some critical
event occurs and we have a column with the time of that event for each

trial.

triall <- data.frame(trial = 1, time_ms = 1:5, event = 2)
trial2 <- data.frame(trial = 2, time_ms = 6:10, event = 8.5)
trial_times <- dplyr::bind_rows(triall, trial2)

4 adjust_times_around_zero

trial_times

We want to adjust the times so that time @ is time of the critical event.
adjust_times(trial_times, time_ms, event, trial, fps = 1000)

The times are adjusted so that the frame closest to the event time gets
the time zero. Setting “align™ to “FALSE" skips this behavior.
adjust_times(trial_times, time_ms, event, trial, align = FALSE, fps = 1000)

In the second trial there is a tie. Two frames are equally close to @. By
default the first frame is chosen to be zero, but setting “ties™ to

~"last"" will break ties with the later frame.

adjust_times(trial_times, time_ms, event, trial, ties = "last”, fps = 1000)

adjust_times_around_zero
Adjust time values around 0

Description

Adjust time values around O

Usage
adjust_times_around_zero(data, time_col = "Time", fps = 60, ties = "first")
Arguments
data a dataframe of eyetracking data for a single trial or a grouped dataframe where
the groups define a single trial.
time_col name (string) of the column with time value. Defaults to "Time".
fps the eyetracking sampling rate. Defaults to 60 frames per second.
ties how to break ties when the smallest times are equally close to zero. Default is
"first"” so that the tie c(-1, 1) is aligned to c (@, 2).
Value

the dataframe with updated time values

aggregate_looks 5

aggregate_looks Aggregate looks

Description

Aggregate the number of looks to each response type over some grouping variables like Subject,
Time, Condition.

Usage

aggregate_looks(data, resp_def, formula)

aggregate_looks2(data, resp_def, resp_var, ...)
Arguments
data a long data frame of looking data
resp_def a response definition or a list of response definition.
formula an aggregation formula. The lefthand terms will be grouping variables, and the

righthand term is the column with eyetracking responses.
resp_var Name of the column that contains eyetracking responses

Grouping columns.

Details

This function is the main tool for preparing eyetracking data for a growth curve analysis. For
example, an aggregation formula like Subject + Time ~ Gaze would provide the number of looks
to each image over time for each subject.

aggregate_looks() uses an aggregation formula like stats: :aggregate(), whereas aggregate_looks2()
uses column names.

Value

a dataframe of the grouping columns along with the number of looks to each response type, the
proportion (and standard error) of looks to the primary response, and the proportion (and standared
error) of missing data.

Examples

target_def <- create_response_def(
label = "looks to target”,

primary = "Target”,
others = c("PhonologicalFoil"”, "SemanticFoil”, "Unrelated”),
elsewhere = "tracked”,

missing = NA)

four_image_data |>

assign_bins

aggregate_looks(target_def, Subject + TrialNo ~ GazeByImageAOI)

four_image_data |>
aggregate_looks(target_def, Subject ~ GazeByImageAOI) |>
str()

With column names
four_image_data |>
aggregate_looks2(target_def, GazeByImageAOI, Subject, TrialNo)

four_image_data |>
aggregate_looks2(target_def, GazeByImageAOI, Subject) |>
str()

phonological_def <- create_response_def(
label = "looks to phonological foil”,

primary = "PhonologicalFoil”,
others = c("Target"”, "SemanticFoil”, "Unrelated"),
elsewhere = "tracked”,

missing = NA)

Aggregate looks to multiple response definitions at once
defs <- list(target_def, phonological_def)
four_image_data |>
aggregate_looks(defs, Subject + BlockNo ~ GazeByImageAOI) |>
dplyr::select(.response_def, Subject, BlockNo, Primary:PropNA) |>
dplyr: :mutate(
Prop = round(Prop, 3),
PropSE = round(PropSE, 3),
PropNA = round(PropNA, 3)
)

Compute a growth curve

growth_curve <- four_image_data |>
adjust_times(Time, TargetOnset, Subject, BlockNo, TrialNo) |>
aggregate_looks(target_def, Time ~ GazeByImageAOI) |>
dplyr::filter(-1000 <= Time, Time <= 2000)

library(ggplot2)
ggplot(growth_curve) +
aes(x = Time, y = Prop) +
geom_hline(linewidth = 2, color = "white"”, yintercept = .25) +

geom_vline(linewidth = 2, color = "white”, xintercept = @) +
geom_pointrange(aes(ymin = Prop - PropSE, ymax = Prop + PropSE)) +
labs(

y = "Proportion of looks to target”,

x = "Time relative to target onset [ms]”

)+

theme_grey(base_size = 14)

assign_bins Assign bins for downsampling looking data

convert_datawiz_code_to_aoi 7

Description

Assign bins for downsampling looking data

Usage
assign_bins(
data,
bin_width = 3,
time_var,
bin_col = ".bin",
na_location = "tail”,
partial = FALSE
)
Arguments
data a dataframe of looking data
bin_width the number of items to put in each bin. Default is 3.
time_var the name of the column representing time
grouping variables
bin_col name of the column to add. Defaults to ".bin".

na_location

partial

Value

Where to assign NA bin numbers. "head” and "tail” respectively put the NA
elements at the head and tail of the vector; "split"” alternates between "tail”
and "head".

whether to exclude values that don’t fit evenly into bins. Defaults to FALSE, so
that the user is warned if a bin is incomplete.

the original dataframe with an added column of bin numbers. The dataframe will be sorted by the
grouping and time variables.

convert_datawiz_code_to_aoi

Convert to DataWiz codes to AOI names

Description

Convert to DataWiz codes to AOI names

Usage

convert_datawiz_code_to_aoi(xs)

8 create_response_def

Arguments
XS a vector of DataWiz codes (-, ., 0, 1)
Value
the vector with NA for "-", "Target" for "1", "Distractor" for "0", and "tracked" for ".".
create_aoi Create an AOI object
Description

Create an object representing an Area of Interest (AOI). Only rectangles are supported (like a jpeg
image in an experiment). Pixel (0,0) is the lower left corner of the screen.

Usage

create_aoi(aoi_name, x_pix, y_pix, screen_width = 1920, screen_height = 1080)

Arguments
aoi_name label of the AOI
X_pix location of the left and right edges in pixels.
y_pix location of the bottom and top edges in pixels.

screen_width width of the screen in pixels. Defaults to 1920.
screen_height width of the screen in pixels. Defaults to 1080.

Value

an AOI object.

create_response_def Create a response definition

Description

A response definition controls how aggregate_looks() works.

Usage

create_response_def (
primary,
others,
elsewhere = NULL,
missing = NA,
label = NULL

cycle_response_def 9

Arguments

primary the primary response of interest

others other responses of interest

elsewhere responses to ignore

missing responses that indicate missing data. Defaults to NA.

label optional label for the response definition. Defaults to the value of primary.
Details

To deal with eyetracking data in a generic way, we need a way to describe eyetracking responses.
We assume that there are four basic gaze types.

* Primary responses: A gaze to a primary or target image.
* Other responses: Gazes to competing images.

 Elsewhere looks: A gaze that is onscreen but not a primary or other response. Typically, this
occurs when the participant is shifting between images.

* Missing looks: A missing or offscreen gaze.
A response definition is a programmatic way of describing these response types, and it allows
aggregate_looks() to map gaze data onto looking counts.
Value

a response_def object

Examples

create_response_def (
label = "looks to target”,

primary = "Target"”,
others = c("PhonologicalFoil”, "SemanticFoil”, "Unrelated”),
elsewhere = "tracked”,

missing = NA)

cycle_response_def Create complementary response definitions

Description
In the typical response definition, there is a primary response compared to other competitors. Of-
tentimes, we are interested in also comparing each of the competitors to the other images. This
function quickly assembles a full cycle of response definitions.

Usage

cycle_response_def (response_def)

10 empirical_logit

Arguments

response_def aresponse definition to use a template for other definitions.

Value

a list of response definitions where each member of c(response_def$primary, response_def$others)
is used as the primary response.

Examples

Create one definition

def <- create_response_def (
primary = 1,
others = c(5, 8, 9),
elsewhere = 0,
missing = NA

)

Create the full cycle of response definitions
cycle_response_def (def)

empirical_logit Compute empirical logit

Description

Compute empirical logit

Usage

empirical_logit(x, y)

empirical_logit_weight(x, y)

Arguments

X vector containing number of looks to target

y vector containing number of looks to distractors
Value

empirical_logit returns the empirical logit of looking to target. empirical_logit_weight re-
turns weights for these values.

References

Dale Barr’s Walkthrough of an "empirical logit" analysis in R

http://talklab.psy.gla.ac.uk/tvw/elogit-wt.html

example_files 11

example_files Locate the path of example eyetracking files

Description

Locate the path of example eyetracking files

Usage

example_files(which = 1)

Arguments

which index of the batch of example files to load

Details

This function is a wrapper over system.file() to locate the paths to bundled eyetracking data.
These files are used to test or demonstrate functionality of the package.

The following sets of files are included:

1. Coartic_Block1_001PQ@XS1 - Data for a block of trials from an eyetracking performed with
a Tobii Eyetracker in an Eprime experiment.

2. Coartic_Block2_001P@0@XS1 - Data for a second block of trials from the above experiment.

Value

Paths to a banch of examples files bundled with the 1ittlelisteners package.

four_image_data Example data from a Visual World experiment

Description

Example data from a Visual World experiment

Usage

four_image_data

Format

A data frame with 20,910 rows and 25 variables

12

interpolate_looks

interpolate_looks

AOI-based gaze interpolation

Description

Fills in windows of missing data if the same AOI is fixated at beginning and end of the missing data
window. For example, the sequence "Target”, NA, NA, "Target” would be interpolated to be
"Target"”, "Target"”, "Target"”, "Target”.

Usage

interpolate_looks(

X,

window,

fps,
response_col,
interp_col,
fillable,
missing_looks

Arguments

X

window

fps
response_col

interp_col

fillable

missing_looks

Details

a dataframe of grouped eyetracking data. Each row should be a single frame of
eyetracking. Use dplyr: :group_by() to set the grouping columns for the data.
The groups should specify a single trial of eyetracking data.

maximum amount of missing data (milliseconds) that can be interpolated. Only
spans of missing data with less than or equal to this duration will be interpolated

number of eyetracking frames (dataframe rows) per second
(character) name of the column with the eyetracking response data

(character) name of a column to add to the dataframe. This column records
whether each frame was interpolated (TRUE) or not (FALSE)

values in the response column where interpolation is legal. These would typi-
cally be AOI locations.

values that can be imputed.

Use window to constrain the duration of missing data windows that can be filled. We conventionally
use 150ms because we would not expect someone to shift their gaze from Image A to Image B to
Image A in that amount of time.

melt_datawiz 13

Examples

We have time in ms, measured at 60 fps, and
we want to fill in gaps of 100 ms.
looks <- tibble::tribble(

~Subject, ~Trial, ~Time, ~AOI, ~Hint,
A", 1, 1000, "Left", "present”,
A", 1, 1017, "Left", "present”,
"AY, 1, 1034, NA, "legal gap”,
"A", 1, 1051, NA, "legal gap",
A", 1, 1068, NA, "legal gap”,
A" 1, 1084, '"Left", "present”,
"A", 1, 1100, NA, "illegal gap”,
A", 2, 983, ‘"Left”, "present”,
"AY, 2, 1000, "Right", "present”,
AT 2, 1017, NA, "illegal gap”,
"AY, 2, 1034, NA, "illegal gap”,
"A", 2, 1051, NA, "illegal gap”,
AT 2, 1068, NA, "illegal gap”,
"AY, 2, 1084, NA, "illegal gap”,
"AY, 2, 1100, NA, "illegal gap”,
AT 2, 1118, NA, "illegal gap”,
"AY, 2, 1135, "Right”, "present”,

)

Note that only the "legal gap"” rows were interpolated
looks |>
dplyr::group_by(Trial) |>
interpolate_looks(
window = 100,
fps = 60,
response_col = "AOI",
interp_col = "Interpolated”,
fillable = c("Left"”, "Right"),
missing_looks = NA

melt_datawiz Convert DataWiz data into long format

Description

DataWiz files have several columns FO, F33, F67, etc. for each time sample. This function converts
a dataframe from such a file into a long format, where there is a single time column and single
column of gaze responses.

Usage

melt_datawiz(df, key_col = "Time", value_col = "Look")

14 read_datawiz

Arguments

df a dataframe created by reading a datawiz file

key_col the name of the new column that holds the time values

value_col the name of the new column that holds the looking data at each time sample
Value

a long data-frame

read_datawiz Read eyetracking data from a datawiz file

Description

Read eyetracking data from a datawiz file

Usage

read_datawiz(filename, sampling_rate = 33.3333)

Arguments

filename a txt file generated by datawiz

sampling_rate the rate of the video recording in ms. By default, the value is 33.3 for 1 frame
every 33.3 ms.

Details

The files exported by DataWiz are a series of tab-separated data files all combined into a single
file. This means that the header row (with the column names separated by tabs) will be repeated
throughout the file. These repeated header rows are removed.

The header rows indicate the time of eyetracking samples by columns named "F0", "F33", "F67",
etc. There are also columns with blank names before column "F0". These are also looking samples
before "FO". This function back-fills the column names so that the first column before "FO" changes
from " " to "X33", where the X indicates a negative time sample.

Value

a dataframe containing the cleaned-up eyetracking data

read_gazedata 15

read_gazedata Load a .gazedata file for an experiment

Description

Loads . gazedata file created by an Eprime experiment running on a Tobii eyetracker, and performs
typical data reduction on that file.

Usage

read_gazedata(
gazedata_path,
eyes = "both",
means_need_both = FALSE,
apply_corrections = TRUE

)

Arguments

gazedata_path path to the . gazedata file that is to be parsed.

eyes string describing which eye(s) should be selected for the Mean columns. Valid
options are "both"”, "left”, and "right”. Defaults to "both”. If "left" is se-
lected, then only the left eye is used to calculate the XMean, YMean, etc. columns.

means_need_both
logical value indicating if both eyes are required to compute Mean columns.
Defaults to FALSE. If FALSE, NA values are ignored, so for example, XMean could
be computed from an XLeft of .25 and an XRight of NA.

apply_corrections
whether to do low-level adjustments like coding offscreen looks as NA, negative
pupil diameters to NA, negative distances to NA, and flip y-axis so the origin is
the lower-left corner. Defaults to TRUE. Only used as FALSE in case "raw" data
is needed.

Details

We extract the columns the following columns: Trialld, RTTime, XGazePosLeftEye, XGazePosRightEye,
YGazePosLeftEye, YGazePosRightEye, DistancelLeftEye, DistanceRightEye, DiameterPupillLeftEye
and DiameterPupilRightEye.

Once these column values are loaded, we make three modifications to the gazedata (when apply_corrections
is TRUE).

1. Gaze measurements with Validity codes greater than or equal to 1 are replaced with NA
values.

2. X,Y gaze values are defined in screen proportions. Values that fall outside [0,1] are outside of
the boundaries of the screen and therefore are nonsensical. Replace them with NA. We perform
a similar correction on pupil diameters and eye-distances by replacing negative values with NA.

16 se_prop

3. The origin of the screen is the upper-left-hand corner of the screen. Flip the y-values so that
the origin is in a more familiar position in the lower-left-hand corner of the screen. This way,
low y values are closer to the bottom of the screen.

4. Compute the mean X, y, distance and diameter values for the left and right eyes. NA values
are ignored when computing the mean, so the pair (XLeft = NA, XRight = .5) yields XMean
=.5.

Value

A dataframe containing the parsed gazedata. Each row of the dataframe contains the eye-tracking
data for a single frame of time recorded during the experiment.

References

Tobii Toolbox for Matlab: Product Description & User Guide

Examples

gazedata_path <- example_files(1)[1]
read_gazedata(gazedata_path)

se_prop Standard error for proportions

Description

See http://www.r-tutor.com/elementary-statistics/interval-estimation/interval-estimate-population-proportion

Usage

se_prop(proportion, n_possible)

Arguments
proportion proportions of hits
n_possible numbers of total events
Value

the standard errors of the proportion estimates

http://bit.ly/1AtKyhR

trim_to_bin_width 17

trim_to_bin_width Truncate times to fit bin width

Description

Samples of eyetracking data are excluded so that the number of frames is evenly divisible by a given
bin width. For example, given a bin width of 3 frames, a trial with 181 frames would lose 1 frame.
The frames aligned so that a key time value have a specific position in a bin. For example, setting
time O to position 1 will truncate the times so that time 0 will be the first frame inside of its bin.

Usage

trim_to_bin_width(
data,
bin_width = 3,
key_time = NULL,
key_position = 1,

time_var,
min_time = NULL,
max_time = NULL
)
Arguments
data a dataframe of looking data
bin_width the number of items to put in each bin. Default is 3.

key_time, key_position
arguments controlling the trimming. The given time value (key_time) will have
a specific position within a bin (key_position). For example, given a value of
0 and position of 2, the trimming will force the frame with time O to fall in the
second frame of its bin.

time_var the name of the column representing time

grouping variables

min_time, max_time
optional arguments controlling the trimming. If used, the time values are filtered
to exclude whole bins of frames before min_time and after max_time.

Value

the original dataframe with its time column trimmed to make it easier to bin time values into groups
of bin_width.

18 trim_to_bin_width

Examples

datal <- tibble::tibble(
task = "testing”,

id = "test1”,
time = -4:6,
frame = seq_along(time)

)

data2 <- tibble::tibble(
task = "testing”,

id = "test2",

time = -5:5,

frame = seq_along(time)
)

Number of rows per id is divisible by bin width
and time @ is center of its bin
dplyr::bind_rows(datal, data2) |>
trim_to_bin_width(3, key_time = @, key_position = 2, time, id) |>
assign_bins(3, time, id) [|>
dplyr::group_by(id, .bin) |>
dplyr::mutate(center_time = median(time))

And exclude times in bins before some minimum time
dplyr::bind_rows(datal, data2) |>
trim_to_bin_width(
bin_width = 3,
key_time = 0,
key_position = 2,
time,
id,
min_time = -1
) 1>

assign_bins(3, time, id)

And exclude times in bins after some maximum time
dplyr::bind_rows(datal, data2) |>
trim_to_bin_width(
bin_width = 3,
key_time = 0,
key_position = 2,
time, id,
min_time = -1,
max_time = 4
) 1>

assign_bins(3, time, id)

Index

x datasets
four_image_data, 11

add_aois, 2

adjust_times, 3
adjust_times_around_zero, 4
aggregate_looks, 5

aggregate_looks?2 (aggregate_looks), 5
assign_bins, 6

convert_datawiz_code_to_aoi, 7
create_aoi, 8
create_response_def, 8
cycle_response_def, 9

empirical_logit, 10
empirical_logit_weight
(empirical_logit), 10
example_files, 11
four_image_data, 11
interpolate_looks, 12

melt_datawiz, 13

read_datawiz, 14
read_gazedata, 15

se_prop, 16
stats::aggregate(), 5
system.file(), 11

trim_to_bin_width, 17

19

	add_aois
	adjust_times
	adjust_times_around_zero
	aggregate_looks
	assign_bins
	convert_datawiz_code_to_aoi
	create_aoi
	create_response_def
	cycle_response_def
	empirical_logit
	example_files
	four_image_data
	interpolate_looks
	melt_datawiz
	read_datawiz
	read_gazedata
	se_prop
	trim_to_bin_width
	Index

